Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/cocv/2025021 | |
Published online | 31 March 2025 |
- A. Hawkins-Daarud, K.G. van der Zee and J. Tinsley Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28 (2012) 3–24. [Google Scholar]
- P. Colli, G. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth. Discrete Contin. Dyn. Syst. 35 (2015) 2423–2442. [Google Scholar]
- P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26 (2015) 93–108. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discrete Contin. Dyn. Syst. Ser. S 10 (2016) 37–54. [Google Scholar]
- S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumour growth. European J. Appl. Math. 26 (2015) 215–243. [CrossRef] [MathSciNet] [Google Scholar]
- P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30 (2017) 2518–2546. [Google Scholar]
- P. Colli, A. Signori and J. Sprekels, Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis. ESAIM Control Optim. Calc. Var. 27 (2021) 46. [Google Scholar]
- P. Colli, A. Signori and J. Sprekels, Optimal control problems with sparsity for tumor growth models involving variational inequalities. J. Optim. Theory Appl. 194 (2022) 25–58. [Google Scholar]
- H. Abels, S. Bosia and M. Grasselli, Cahn–Hilliard equation with nonlocal singular free energies. Ann. Mat. Pura Appl. 194 (2015) 1071–1106. [MathSciNet] [Google Scholar]
- P.W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn–Hilliard equation. J. Differ. Equ. 212 (2005) 235–277. [Google Scholar]
- C.G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn–Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263 (2017) 5253–5297. [Google Scholar]
- C.G. Gal and M. Grasselli, Longtime behavior of nonlocal Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 34 (2014) 145–179. [Google Scholar]
- J. Han, The Cauchy problem and steady state solutions for a nonlocal Cahn–Hilliard equation. Electron. J. Differ. Equ. 9 (2014) 113. [Google Scholar]
- E. Davoli, H. Ranetbauer, L. Scarpa and L. Trussardi, Degenerate nonlocal Cahn–Hilliard equations: well-posedness, regularity and local asymptotics. Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020) 627–651. [MathSciNet] [Google Scholar]
- E. Davoli, L. Scarpa and L. Trussardi, Nonlocal-to-local convergence of Cahn–Hilliard equations: Neumann boundary conditions and viscosity terms. Arch. Ration. Mech. Anal. 239 (2021) 117–149. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- E. Davoli, L. Scarpa and L. Trussardi, Local asymptotics for nonlocal convective Cahn–Hilliard equations with W1,1 kernel and singular potential. J. Differ. Equ. 289 (2021) 35–58. [Google Scholar]
- E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57 (2004) 1627–1672. [CrossRef] [Google Scholar]
- F.H. Lin, Some dynamical properties of Ginzburg–Landau vortices. Commun. Pure Appl. Math. 49 (1996) 323–359. [Google Scholar]
- E. Rocca and R. Scala, A rigorous sharp interface limit of a diffuse interface model related to tumor growth. J. Nonlinear Sci. 27 (2017) 847–872. [CrossRef] [MathSciNet] [Google Scholar]
- H. Abels and Y. Terasawa, Convergence of a nonlocal to a local diffuse interface model for two-phase flow with unmatched densities. Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 1871–1881. [Google Scholar]
- J.A. Carrillo, C. Elbar and J. Skrzeczkowski, Degenerate Cahn–Hilliard systems: from nonlocal to local. Commun. Contemp. Math. (2024). [Google Scholar]
- C. Elbar and J. Skrzeczkowski, Degenerate Cahn–Hilliard equation: From nonlocal to local. J. Differ. Equ. 364 (2023) 576–611. [Google Scholar]
- H. Abels and C. Hurm, Strong nonlocal-to-local convergence of the Cahn–Hilliard equation and its operator. J. Differ. Equ. 402 (2024) 593–624. [Google Scholar]
- C.G. Gal, A. Giorgini and M. Grasselli, The separation property for 2D Cahn–Hilliard equations: local, nonlocal and fractional energy cases. Discrete Continuous Dyn. Syst. 43 (2023) 2270–2304. [Google Scholar]
- A. Poiatti, The 3D strict separation property for the nonlocal Cahn–Hilliard equation with singular potential, Analysis and PDE, 18 (2025) 109–139. [MathSciNet] [Google Scholar]
- S. Frigeri, C.G. Gal and M. Grasselli, Regularity results for the nonlocal Cahn–Hilliard equation with singular potential and degenerate mobility. J. Differ. Equ. 287 (2021) 295–328. [Google Scholar]
- H. Garcke and K.F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. European J. Appl. Math. 28 (2017) 284–316. [Google Scholar]
- H. Garcke, K.F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard-Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28 (2018) 525–577. [CrossRef] [MathSciNet] [Google Scholar]
- H. Garcke, K.F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. 78 (2018) 495–544. [Google Scholar]
- L. Scarpa and A. Signori, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport. Nonlinearity 34 (2021) 3199–3250. [Google Scholar]
- C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth. Appl. Math. Optim. 83 (2021) 739–787. [CrossRef] [MathSciNet] [Google Scholar]
- M. Fornoni, Optimal distributed control for a viscous non-local tumour growth model. Appl. Math. Optim. 89 (2024) 8. [Google Scholar]
- P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali and E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth. Math. Models Methods Appl. Sci. 31 (2021) 1419–1468. [Google Scholar]
- P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali and E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth. Math. Models Methods Appl. Sci. 31 (2021) 1419–1468. [Google Scholar]
- S. Frigeri, K.F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, in Solvability, regularity, and optimal control of boundary value problems for PDEs. Vol. 22 of Springer INdAM Series. Springer, Cham (2017) 217–254. [Google Scholar]
- S. Frigeri, K.F. Lam and A. Signori, Strong well-posedness and inverse identification problem of a non-local phase field tumour model with degenerate mobilities. European J. Appl. Math. 33 (2022) 267–308. [Google Scholar]
- Z. Szymańska, C. Rodrigo, M. Lachowicz and M. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19 (2009) 257–281. [Google Scholar]
- I. Bosi, A. Fasano, M. Primicerio and T. Hillen, A non-local model for cancer stem cells and the tumour growth paradox. Math. Med. Biol. 34 (2017) 59–75. [Google Scholar]
- C. Lee, M. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. Leaver, K. McCann, J. Umbanhowar and A. Mogilner, Non-local concepts and models in biology. J. Theor. Biol. 210 (2001) 201–219. [Google Scholar]
- N. Armstrong, K. Painter and J. Sherratt, A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243 (2006) 98–113. [Google Scholar]
- M. Chaplain, M. Lachowicz, Z. Szymańska and D. Wrzosek, Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 21 (2011) 719–743. [Google Scholar]
- A. Gerisch and M. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion. J. Theor. Biol. 250 (2008) 684–704. [Google Scholar]
- P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term. Discrete Continuous Dyn. Syst. S 15 (2022) 2135–2172. [Google Scholar]
- P. Colli and A. Signori, Boundary control problem and optimality conditions for the Cahn–Hilliard equation with dynamic boundary conditions. Int. J. Control 94 (2019) 1852–1869. [Google Scholar]
- J. Simon, Compact sets in the space Lp (0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.