Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/cocv/2025017 | |
Published online | 31 March 2025 |
- G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9 (1998) 261–284. [CrossRef] [Google Scholar]
- G. Alberti, G. Bellettini, M. Cassandro and E. Presutti, Surface tension in Ising systems with Kac potentials. J. Stat. Phys. 82 (1996) 743–796. [CrossRef] [Google Scholar]
- J. Bricmont, J. Lebowitz and C.-E. Pfister, On the surface tension of lattice systems. Ann. N. Y. Acad. Sci. 337 (1980). [Google Scholar]
- S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids. Ann. I.H.P. Anal. Non-linéaire 7 (1990) 67–90. [Google Scholar]
- G. Bouchitte, Singular perturbations of variational problems arising from a two-phase transition model. Appl. Math. Optim. 21 (1990) 289–314. [CrossRef] [MathSciNet] [Google Scholar]
- J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. [Google Scholar]
- L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
- P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209–260. [Google Scholar]
- L. Modica and S. Mortola, Un esempio di Gamma-convergenza. Bol. Unione Mat. Ital. 14 (1977) 285–299. [Google Scholar]
- M. Barlow, R. Bass, Z.-Q. Chen and M. Kassmann, Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361 (2009) 1963–1999. [Google Scholar]
- J. Bertoin, Lévy Processes. Cambridge University Press (1998). [Google Scholar]
- K.L. Chung, Probability and Mathematical Statistics. Academic Press, San Diego (1974). [Google Scholar]
- G. Foghem, D. Padilla-Garza and M. Schmidtchen, Gradient flow solutions for porous medium equations with nonlocal Lévy-type pressure. Calc. Var. 64 (2025) 88. [Google Scholar]
- E. Davoli and E. Tasso, Non-local non-homogeneous phase transitions: regularity of optimal profiles and sharp-interface limit (2024). arXiv:2412.11756 [math]. [Google Scholar]
- G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. Math. Ann. 310 (1998) 527–560. [CrossRef] [MathSciNet] [Google Scholar]
- X. Cabre, E. Cinti and J. Serra, Stable solutions to the fractional Allen–Cahn equation in the nonlocal perimeter regime. (2021). arXiv:2111.06285 [math]. [Google Scholar]
- O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm. J. Math. Pures Appl. 101 (2014) 1–26. [Google Scholar]
- G. Leoni, A First Course in Fractional Sobolev Spaces. Vol. 229 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2023). [Google Scholar]
- O. Savin and E. Valdinoci, Γ-convergence for nonlocal phase transitions. Ann. Inst. Henri Poincaré C, Analyse Non Linéaire 29 (2012) 479–500. [MathSciNet] [Google Scholar]
- W. Caldwell, Non-Local Phase Transitions. PhD thesis, Carnegie Mellon University (2025) (in preparation). [Google Scholar]
- G. Dal Maso, I. Fonseca and G. Leoni, Asymptotic analysis of second order nonlocal Cahn–Hilliard-type functionals. Trans. Am. Math. Soc. 370 (2017) 2785–2823. [Google Scholar]
- G. Dal Maso, An Introduction to Γ-Convergence. Springer Science. Birkhäuser, Boston, MA (1993). [Google Scholar]
- M. Ludwig, Anisotropic fractional perimeters. J. Differ. Geom. 96 (2014) 77–93. [Google Scholar]
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). [Google Scholar]
- F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, 1st edn. Cambridge University Press (2012). [Google Scholar]
- D.A. Klain and G.-C. Rota, Introduction to Geometric Probability. Cambridge University Press (1997). [Google Scholar]
- R. Schneider and W. Weil, Stochastic and Integral Geometry. Probability and Its Applications. Springer, Berlin, Heidelberg (2008). [Google Scholar]
- D. Spector, Simple Proofs of Some Results of Reshetnyak. Proc. Am. Math. Soc. 139 (2011) 1681–1690. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.