Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 30
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2025020
Published online 31 March 2025
  1. O.E. Barndorff-Nielsen, F.E. Benth and A.E.D. Veraart, Ambit processes and stochastic partial differential equations, in Advanced Mathematical Methods for Finance. Springer (2011) 35–74. [Google Scholar]
  2. O.E. Barndorff-Nielsen and J. Schmiegel, Time change, volatility, and turbulence, in Mathematical Control Theory and Finance. Springer (2008) 29–53. [Google Scholar]
  3. O.E Barndorff-Nielsen, F.E. Benth, A.E.D. Veraart et al., Modelling energy spot prices by volatility modulated Lévy-driven volterra processes. Bernoulli 19 (2013) 803–845. [Google Scholar]
  4. J. Gatheral, T. Jaisson and M. Rosenbaum, Volatility is rough. Quant. Finance 18 (2018) 933–949. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Hainaut, Continuous Time Processes for Finance: Switching, Self-exciting, Fractional, and Other Recent Dynamics. Bocconi & Springer Series (2022). [Google Scholar]
  6. E. Alòs, J.A. León and J. Vives, On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stochast. 11 (2007) 571–589. [Google Scholar]
  7. C. Bayer, P. Friz and J. Gatheral, Pricing under rough volatility. Quant. Finance 16 (2016) 887–904. [Google Scholar]
  8. N. Hritonenko, Nonlinear optimal control of vintage capital lifetime and irreversible investments. Nonlinear Anal. Theory Methods Appl. 63 (2005) e579–e586. [Google Scholar]
  9. V.V. Tarasova and V.E. Tarasov, Concept of dynamic memory in economics. Commun. Nonlinear Sci. Numer. Simul. 55 (2018) 127–145. [Google Scholar]
  10. W.H. Fleming and M. Nisio, On stochastic relaxed control for partially observed diffusions. Nagoya Math. J. 93 (1984) 71–108. [MathSciNet] [Google Scholar]
  11. F. Dufour and R.H. Stockbridge, On the existence of strict optimal controls for constrained, controlled Markov processes in continuous time. Stochastics 84 (2012) 55–78. [MathSciNet] [Google Scholar]
  12. N. El Karoui, N. Du Huu and M. Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics 20 (1987) 169–219. [CrossRef] [MathSciNet] [Google Scholar]
  13. U.G. Haussmann and J.P. Lepeltier, On the existence of optimal controls. SIAM J. Control Optim. 28 (1990) 851–902. [MathSciNet] [Google Scholar]
  14. T.G Kurtz and R.H. Stockbridge, Existence of Markov controls and characterization of optimal Markov controls. SIAM J. Control Optim. 36 (1998) 609–653. [MathSciNet] [Google Scholar]
  15. B. Mezerdi and S. Bahlali, Necessary conditions for optimality in relaxed stochastic control problems. Stochastics 73 (2002) 201–218. [Google Scholar]
  16. S. Ankirchner, N. Kazi-Tani and J. Wendt, The role of correlation in diffusion control ranking games. SIAM J. Control Optim. 62 (2024) 1465–1489. [Google Scholar]
  17. A. Barrasso and N. Touzi, Controlled diffusion mean field games with common noise and Mckean–Vlasov second order backward SDEs. Theory Probab. Appl. 66 (2022) 613–639. [Google Scholar]
  18. C. Benazzoli, L. Campi and L. Di Persio, Mean field games with controlled jump–diffusion dynamics: existence results and an illiquid interbank market model. Stochast. Processes Appl. 130 (2020) 6927–6964. [Google Scholar]
  19. G. Bouveret, R. Dumitrescu and P. Tankov, Mean-field games of optimal stopping: a relaxed solution approach. SIAM J. Control Optim. 58 (2020) 1795–1821. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Burzoni and L. Campi, Mean field games with absorption and common noise with a model of bank run. Stochast. Processes Appl. 164 (2023) 206–241. [Google Scholar]
  21. A. Cecchin and M. Fischer, Probabilistic approach to finite state mean field games. Appl. Math. Optim. 81 (2020) 253–300. [MathSciNet] [Google Scholar]
  22. J. Claisse, Z. Ren and X. Tan, Mean field games with branching. Ann. Appl. Probab. 33 (2023) 1034–1075. [Google Scholar]
  23. R. Dumitrescu, M. Leutscher and P. Tankov, Control and optimal stopping mean field games: a linear programming approach. Electron. J. Probab. 26 (2021) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Fu and U. Horst, Mean field games with singular controls. SIAM J. Control Optim. 55 (2017) 3833–3868. [Google Scholar]
  25. D. Lacker, Mean field games via controlled martingale problems: existence of Markovian equilibria. Stochast. Processes Appl. 125 (2015) 2856–2894. [Google Scholar]
  26. N. Bauerle and D. Lange, Optimal control of partially observable piecewise deterministic markov processes. SIAM J. Control Optim. 56 (2018) 1441–1462. [Google Scholar]
  27. N. Bäuerle and U. Rieder, Mdp algorithms for portfolio optimization problems in pure jump markets. Finance Stochast. 13 (2009) 591–611. [Google Scholar]
  28. O.L.V. Costa and F. Dufour, Average continuous control of piecewise deterministic Markov processes. SIAM J. Control Optim. 48 (2010) 4262–4291. [Google Scholar]
  29. O.L.V. Costa and F. Dufour, The policy iteration algorithm for average continuous control of piecewise deterministic Markov processes. Appl. Math. Optim. 62 (2010) 185–204. [MathSciNet] [Google Scholar]
  30. O.L. do Valle Costa and F. Dufour, Continuous Average Control of Piecewise Deterministic Markov Processes. Springer (2013). [Google Scholar]
  31. T. Roubíček, Optimal control of nonlinear Fredholm integral equations. J. Optim. Theory Appl. 97 (1998) 707–729. [Google Scholar]
  32. J. Coletsos, A relaxation approach to optimal control of Volterra integral equations. Eur. J. Control 42 (2018) 25–31. [Google Scholar]
  33. J.J. Gasimov, J.A. Asadzade and N.I. Mahmudov, Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations. Qual. Theory Dyn. Syst. 23 (2024) 213. [Google Scholar]
  34. P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM J. Control Optim. 58 (2020) 136–164. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Moon, A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Math. 8 (2023) 22924–22943. [MathSciNet] [Google Scholar]
  36. L. Moradi, D. Conte, E. Farsimadan, F. Palmieri and B. Paternoster, Optimal control of system governed by nonlinear Volterra integral and fractional derivative equations. Computat. Appl. Math. 40 (2021) 157. [Google Scholar]
  37. J. Yong, Backward stochastic Volterra integral equations and some related problems. Stochast. Processes Appl. 116 (2006) 779–795. [Google Scholar]
  38. N. Agram and B. Øksendal, Malliavin calculus and optimal control of stochastic Volterra equations. J. Optim. Theory Appl. 167 (2015) 1070–1094. [CrossRef] [MathSciNet] [Google Scholar]
  39. H. Wang and J. Yong, Time-inconsistent stochastic optimal control problems and backward stochastic Volterra integral equations. ESAIM Control Optim. Calc. Var. 27 (2021) 22. [Google Scholar]
  40. H. Wang, J. Yong and C. Zhou, Linear-quadratic optimal controls for stochastic Volterra integral equations: causal state feedback and path-dependent Riccati equations. SIAM J. Control Optim. 61 (2023) 2595–2629. [CrossRef] [MathSciNet] [Google Scholar]
  41. M.L. Kleptsyna, A. Le Breton and M. Viot, About the linear-quadratic regulator problem under a fractional brownian perturbation. ESAIM Probab. Statist. 7 (2003) 161–170. [Google Scholar]
  42. T.E. Duncan and B. Pasik-Duncan, Linear-quadratic fractional gaussian control. SIAM J. Control Optim. 51 (2013) 4504–4519. [Google Scholar]
  43. T. Wang, Linear quadratic control problems of stochastic Volterra integral equations. ESAIM Control Optim. Calc. Var. 24 (2018) 1849–1879. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  44. E. Abi Jaber, E. Miller and H. Pham, Linear-quadratic control for a class of stochastic Volterra equations: solvability and approximation. Ann. Appl. Probab. 31 (2021) 2244–2274. [MathSciNet] [Google Scholar]
  45. Y. Hamaguchi, Infinite horizon backward stochastic Volterra integral equations and discounted control problems. ESAIM Control Optim. Calc. Var. 27 (2021) 101. [CrossRef] [EDP Sciences] [Google Scholar]
  46. Y. Hamaguchi, On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay. Appl. Math. Optim. 87 (2023) 42. [CrossRef] [Google Scholar]
  47. Y. Hamaguchi and T. Wang, Linear–quadratic stochastic Volterra controls I: causal feedback strategies. Stochast. Processes Appl. 176 (2024) 104449. [Google Scholar]
  48. Y. Hamaguchi and T. Wang, Linear-quadratic stochastic Volterra controls II: optimal strategies and Riccati–Volterra equations. ESAIM Control Optim. Calc. Var. 30 (2024) 48. [Google Scholar]
  49. K. Bahlali, M. Mezerdi and B. Mezerdi, On the relaxed mean-field stochastic control problem. Stochast. Dyn. 18 (2018) 1850024. [Google Scholar]
  50. Y. Chen, T. Nie and Z. Wu, The stochastic maximum principle for relaxed control problem with regime-switching. Syst. Control Lett. 169 (2022) 105391. [Google Scholar]
  51. M. Mezerdi and B. Mezerdi, On the maximum principle for relaxed control problems of nonlinear stochastic systems. Adv. Continuous Discrete Models 2024 (2024) 8. [Google Scholar]
  52. Z. Brzezniak and R. Serrano, Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces. SIAM J. Control Optim. 51 (2013) 2664–2703. [Google Scholar]
  53. A.F. Filippov, On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math. Ser. A: Control 1 (1962) 76–84. [CrossRef] [Google Scholar]
  54. E. Abi Jaber, M. Larsson, S. Pulido et al., Affine Volterra processes. Ann. Appl. Probab. 29 (2019) 3155–3200. [MathSciNet] [Google Scholar]
  55. P.E. Protter, Stochastic differential equations, in Stochastic Integration and Differential Equations. Springer (2005) 249–361. [Google Scholar]
  56. E. Abi Jaber, C. Cuchiero, M. Larsson and S. Pulido, A weak solution theory for stochastic Volterra equations of convolution type. Ann. Appl. Probab. 31 (2021) 2924–2952. [MathSciNet] [Google Scholar]
  57. D.J. Prömel and D. Scheffels, On the existence of weak solutions to stochastic Volterra equations. Electron. Commun. Probab. 28 (2023) 1–12. [Google Scholar]
  58. A. Bondi and S. Pulido, Feller’s test for explosions of stochastic Volterra equations. arXiv preprint arXiv:2406.13537 (2024). [Google Scholar]
  59. A.K. Dixit, Investment Under Uncertainty. Princeton University (1994). [Google Scholar]
  60. M.B. Chiarolla and U.G. Haussmann, On a stochastic, irreversible investment problem. SIAM J. Control Optim. 48 (2009) 438–462. [Google Scholar]
  61. M.I. Kamien and E. Muller, Optimal control with integral state equations. Rev. Econ. Stud. 43 (1976) 469–473. [Google Scholar]
  62. H. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems. Springer Science & Business Media (2012). [Google Scholar]
  63. H. Crauel, Random Probability Measures on Polish Spaces, Vol. 11. CRC Press (2002). [Google Scholar]
  64. C. Castaing, P.R. De Fitte and M. Valadier, Young Measures on Topological Spaces: With Applications in Control Theory and Probability Theory, Vol. 571. Springer Science & Business Media (2004). [Google Scholar]
  65. O. Kallenberg, Foundations of Modern Probability, 2nd edn. Springer-Verlag (2002). [Google Scholar]
  66. G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Vol. 34. Cambridge University Press (1990). [Google Scholar]
  67. L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press (1973). [Google Scholar]
  68. R.E. Megginson, An Introduction to Banach Space Theory, Vol. 183. Springer Science & Business Media (2012). [Google Scholar]
  69. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Vol. 113. Springer Science & Business Media (2012). [Google Scholar]
  70. E.J. Balder, On WS-convergence of product measures. Math. Oper. Res. 26 (2001) 494–518. [CrossRef] [MathSciNet] [Google Scholar]
  71. P.R. de Fitte, Compactness criteria for the stable topology. Bull. Pol. Acad. Sci. Math. 51 (2003) 343–363. [Google Scholar]
  72. M. Valadier, Young measures, methods of nonconvex analysis. Lecture Notes in Mathematics. Springer, Berlin (1990) 152–188. [Google Scholar]
  73. E.J. Balder, Lectures on young measure theory and its applications in economics, Utrecht University (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.