Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 40 | |
DOI | https://doi.org/10.1051/cocv/2024083 | |
Published online | 31 January 2025 |
- R.M. Anderson, B. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control. Oxford University Press (1992). [Google Scholar]
- H. Behncke, Optimal control of deterministic epidemics. Optim. Control Appl. Methods 21 (2000) 269–285. [Google Scholar]
- E. Hansen and T. Day, Optimal control of epidemics with limited resources. J. Math. Biol. 62 (2011) 423–451. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- M. Martcheva, An Introduction to Mathematical Epidemiology, Vol. 61. Springer (2015). [CrossRef] [Google Scholar]
- W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115 (1927) 700–721. [CrossRef] [Google Scholar]
- F.E. Alvarez, D. Argente and F. Lippi, A simple planning problem for COVID-19 lockdown. Technical report, National Bureau of Economic Research (2020). [Google Scholar]
- F. Avram, L. Freddi, D. Goreac, J. Li and J. Li, Controlled compartmental models with time-varying population: normalization, viability and comparison. J. Optim. Theory Appl. 198 (2023) 1019–1048. [CrossRef] [MathSciNet] [Google Scholar]
- L. Freddi, D. Goreac, J. Li and B. Xu, SIR epidemics with state-dependent costs and ICU constraints: a Hamilton–Jacobi verification argument and dual LP algorithms. Appl. Math. Optim. 86 (2022) Paper No. 23, 31. [CrossRef] [Google Scholar]
- D.I. Ketcheson, Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention. J. Math. Biol. 83 (2021) 7. [CrossRef] [PubMed] [Google Scholar]
- T. Kruse and P. Strack, Optimal control of an epidemic through social distancing. https://ssrn.com/abstract=3581295 (2020). [Google Scholar]
- E. Molina and A. Rapaport, An optimal feedback control that minimizes the epidemic peak in the SIR model under a budget constraint. Automatica J. IFAC 146 (2022) Paper No. 110596, 8. [CrossRef] [Google Scholar]
- A. Di Liddo, A S-I-R vector disease model with delay. Math. Model. 7 (1986) 793–802. [CrossRef] [Google Scholar]
- E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays. J. Math. Biol. 33 (1995) 250–260. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- N. Yoshida and T. Hara, Global stability of a delayed SIR epidemic model with density dependent birth and death rates. J. Comput. Appl. Math. 201 (2007) 339–347. [CrossRef] [MathSciNet] [Google Scholar]
- C.C. McCluskey, Complete global stability for an SIR epidemic model with delay—distributed or discrete. Nonlinear Anal. Real World Appl. 11 (2010) 55–59. [CrossRef] [MathSciNet] [Google Scholar]
- G. Zaman, Y.H. Kang and I.H. Jung, Optimal treatment of an sir epidemic model with time delay. Biosystems 98 (2009) 43–50. [CrossRef] [PubMed] [Google Scholar]
- Z. Liu, P. Magal, O. Seydi and G. Webb, A COVID-19 epidemic model with latency period. Infect. Dis. Model. 5 (2020) 323–337. [Google Scholar]
- C. Yang, Y. Yang, Z. Li and L. Zhang, Modeling and analysis of COVID-19 based on a time delay dynamic model. Math. Biosci. Eng. 18 (2021) 154–165. [CrossRef] [MathSciNet] [Google Scholar]
- H. Yang, X. Lin and J. Wu, Qualitative analysis of a time-delay transmission model for COVID-19 based on susceptible populations with basic medical history. Qeios (2023). [Google Scholar]
- B. Patterson and J. Wang, How does the latency period impact the modeling of COVID-19 transmission dynamics? Math. Appl. Sci. Eng. 3 (2022) 60–85. [CrossRef] [Google Scholar]
- M. Kantner and T. Koprucki, Beyond just “flattening the curve”: optimal control of epidemics with purely non-pharmaceutical interventions. J. Math. Ind. 10 (2020) 1–23. [CrossRef] [Google Scholar]
- L. Miclo, D. Spiro and J. Weibull, Optimal epidemic suppression under an ICU constraint: an analytical solution. J. Math. Econom. 101 (2022) 102669. [CrossRef] [Google Scholar]
- F. Avram, L. Freddi and D. Goreac, Optimal control of a SIR epidemic with ICU constraints and target ob jectives. Appl. Math. Comput. 418 (2022) Paper No. 126816, 22. [Google Scholar]
- G. Haddad, Monotone viable trajectories for functional differential inclusions. J. Differ. Equ. 42 (1981) 1–24. [CrossRef] [Google Scholar]
- S. Hu and N. Papageorgiou, Delay differential inclusions with constraints. Proc. Amer. Math. Soc. 123 (1995) 2141–2150. [CrossRef] [MathSciNet] [Google Scholar]
- H. Frankowska, E.M. Marchini and M. Mazzola, Necessary optimality conditions for infinite dimensional state constrained control problems. J. Differ. Equ. 264 (2018) 7294–7327. [CrossRef] [Google Scholar]
- G. Haddad, Functional viability theorems for differential inclusions with memory. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 179–204. [CrossRef] [MathSciNet] [Google Scholar]
- J.-P. Aubin, Viability Theory. Birkhäuser Boston, Boston, MA (2009). [CrossRef] [Google Scholar]
- H. Frankowska, E.M. Marchini and M. Mazzola, A relaxation result for state constrained inclusions in infinite dimension. Math. Control Relat. Fields 6 (2016) 113–141. [CrossRef] [MathSciNet] [Google Scholar]
- H. Frankowska and I. Haidar, Viable trajectories for nonconvex differential inclusions with constant delay. IFAC- PapersOnLine 51 (2018) 112–117. [CrossRef] [Google Scholar]
- L. Freddi and D. Goreac, Infinite horizon optimal control of a SIR epidemic under an ICU constraint. J. Convex Anal. 31 (2024). [Google Scholar]
- R.B. Vinter, State constrained optimal control problems with time delays. J. Math. Anal. Appl. 457 (2018) 1696–1712. [CrossRef] [MathSciNet] [Google Scholar]
- R.B. Vinter, Optimal control problems with time delays: constancy of the Hamiltonian. SIAM J. Control Optim. 57 (2019) 2574–2602. [CrossRef] [MathSciNet] [Google Scholar]
- A. Boccia and R.B. Vinter, The maximum principle for optimal control problems with time delays. SIAM J. Control Optim. 55 (2017) 2905–2935. [CrossRef] [MathSciNet] [Google Scholar]
- L. Freddi, Optimal control of the transmission rate in compartmental epidemics. Math. Control Relat. Fields 12 (2012) 201–223. [Google Scholar]
- R. Rockafellar and R.-B. Wets, Variational Analysis, Vol. 317 of Gundlehren der mathematischen Wissenchaften, 3rd printing, 2009 edn. Springer-Verlag, Berlin (1998). [CrossRef] [Google Scholar]
- J. Hale and S.M.Verduyn Lunel, Introduction to Functional Differential Equations, Vol. 99 of Applied Mathematical Sciences. Springer New York (1993). [Google Scholar]
- G. Teschl, Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics. American Mathematical Society (2012). [CrossRef] [Google Scholar]
- J.-P. Aubin and H. Frankowska, Set-valued analysis. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2009). [Google Scholar]
- G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Vol. 207 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1989). [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). [CrossRef] [Google Scholar]
- J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Vol. 264 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1984). [Google Scholar]
- S.A. Lauer, K.H. Grantz, Q. Bi, F.K. Jones, Q. Zheng, H.R. Meredith, A.S. Azman, N.G. Reich and J. Lessler, The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172 (2020) 577–582. [CrossRef] [PubMed] [Google Scholar]
- T. Ma, S. Ding, R. Huang, H. Wang, J. Wang, J. Liu, J. Wang, J. Li, C. Wu, H. Fan and N. Zhou, The latent period of coronavirus disease 2019 with SARS-CoV-2 B.1.617.2 delta variant of concern in the postvaccination era. Immun. Inflam. Dis. 10 (2022) e664. [CrossRef] [Google Scholar]
- Y. Wu, L. Kang, Z. Guo, J. Liu, M. Liu and W. Liang, Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA Network Open 5 (2022). [Google Scholar]
- I.S. Team Commands, Bocop: an open source toolbox for optimal control. http://bocop.org (2017). [Google Scholar]
- F. Bonnans, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop – A Collection of Examples. Technical report, INRIA (2019). [Google Scholar]
- O. Hájek, Discontinuous differential equations I, II. J. Differ. Equ. 32 (1979) 149–170. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.