Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 43 | |
DOI | https://doi.org/10.1051/cocv/2024005 | |
Published online | 10 February 2025 |
- T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal. TMA 20 (1993) 1205–1216. [CrossRef] [Google Scholar]
- M. Willem, Minimax Theorems. Birkhäuser, Boston (1996). [CrossRef] [Google Scholar]
- T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities. Proc. Amer. Math. Soc. 123 (1995) 3555–3561. [CrossRef] [MathSciNet] [Google Scholar]
- C.J. Batkam, and F. Colin, Generalized Fountain Theorem and applications to strongly indefinite semilinear problems. J. Math. Anal. Appl. 405 (2013) 438–452. [CrossRef] [MathSciNet] [Google Scholar]
- W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Diff. Equ. 3 (1998) 441–472. [Google Scholar]
- S. Chen and C. Wang, An infinite-dimensional linking theorem without upper semi-continuous assumption and its applications. J. Math. Anal. Appl. 420 (2014) 1552–1567. [CrossRef] [MathSciNet] [Google Scholar]
- L. Gu and H. Zhou, An improved fountain theorem and its application. Adv. Nonlinear Stud. 17 (2016) 727–738. [Google Scholar]
- W. Zou, Variant fountain theorems and their applications. Manuscripta Math. 104 (2001) 343–358. [CrossRef] [MathSciNet] [Google Scholar]
- D. Liu, On a p-Kirchhoff equation via Fountain Theorem and Dual Fountain Theorem. Nonlinear Anal. 72 (2010) 302–308. [CrossRef] [MathSciNet] [Google Scholar]
- J. Sun, Infinitely many solutions for a class of sublinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 390 (2012) 514–522. [CrossRef] [MathSciNet] [Google Scholar]
- F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). [Google Scholar]
- K.C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102–129. [CrossRef] [MathSciNet] [Google Scholar]
- P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Application to Differential Equations. American Mathematical Society, CBMS, 65, USA (1986). [CrossRef] [Google Scholar]
- S. Carl, V.K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications. Springer, New York (2007). [CrossRef] [Google Scholar]
- D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of The Solutions of Hemivariational Inequalities. Springer Science + Business Media Dordrecht (1999). [CrossRef] [Google Scholar]
- A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 77–109. [CrossRef] [MathSciNet] [Google Scholar]
- C.O. Alves and D.C. de Morais Filho, Existence and concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 69 (2018) 144–165. [CrossRef] [Google Scholar]
- C.O. Alves and C. Ji, Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method. Calc. Var. 59 (2020) 21. [CrossRef] [Google Scholar]
- C. Ji and A. Szulkin, A logarithmic Schroodinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437 (2016) 241–254. [CrossRef] [MathSciNet] [Google Scholar]
- J. Kobayashi and M. Ôtani, The principle of symmetric criticality for non-differentiable mappings. J. Funct. Anal. 214 (2004) 428–449. [CrossRef] [MathSciNet] [Google Scholar]
- G. Mancini and Musina, Hole and obstacles. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1988) 323–345. [CrossRef] [MathSciNet] [Google Scholar]
- M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential. Calc. Var. 54 (2015) 585–597. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dai, Nonsmooth version of Fountain theorem and its application to a Dirichlet-type differential inclusion problem. Nonlinear Anal. 72 (2010) 1454–1461. [CrossRef] [MathSciNet] [Google Scholar]
- H. Heinz, Free Ljusternik–Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems. J. Diff. Equ. 66 (1987) 263–300. [CrossRef] [Google Scholar]
- D.C. Clark, A variant of the Ljusternik–Schnirelman theory. Indiana Univ. Math. J. 22 (1972) 65–74. [Google Scholar]
- B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9 (2007) 525–543. [Google Scholar]
- C.O. Alves, G.M. Figueiredo and M.T.O. Pimenta, Existence and profile of ground-state solutions to a 1-Laplacian problem in ℝN. Bull. Braz. Math. Soc., New Series, doi:10.1007/s00574-019-00179-4 [Google Scholar]
- C.O. Alves and M.T.O. Pimenta, On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator. Calc. Var. 56 (2017) 143. [CrossRef] [Google Scholar]
- M. Degiovanni and P. Magrone, Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator. Calc. Var. 36 (2009) 591–609. [CrossRef] [MathSciNet] [Google Scholar]
- G.M. Figueiredo and M.T.O. Pimenta, Strauss’ and Lions’ type results in BV (ℝN) with an application to 1-Laplacian problem. Milan J. Math. 86 (2018) 15–30. [CrossRef] [MathSciNet] [Google Scholar]
- G.M. Figueiredo and M.T.O. Pimenta, Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials. J. Math. Anal. Appl. 459 (2018) 861–878. [CrossRef] [MathSciNet] [Google Scholar]
- K. Chang, The spectrum of the 1-Laplace operator. Commun. Contemp. Math. 9 (2009) 515–543. [Google Scholar]
- F. Demengel, On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 4 (1999) 667–686. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- A. Molino Salas and S. Segura de León, Elliptic equations involving the 1-Laplacian and a subcritical source term. Nonlinear Anal. 168 (2018) 50–66. [CrossRef] [MathSciNet] [Google Scholar]
- J.C. Ortiz Chata and M.T.O. Pimenta, A Berestycki-Lions’ type result to a quasilinear elliptic problem involving the 1-laplacian operator. J. Math. Anal. Appl., doi.org/10.1016/j.jmaa.2021.125074. [Google Scholar]
- I. Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc. (1979) 443–474. [CrossRef] [MathSciNet] [Google Scholar]
- G. Molica Bisci and P. Pucci, Nonlinear Problems with Lack of Compactness, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 36 (2021). [CrossRef] [Google Scholar]
- F.H. Clarke, Generalized gradients and applications. Trans. Amer. Math. Soc. 205 (1975) 247–262. [CrossRef] [MathSciNet] [Google Scholar]
- T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lectures Notes in Math. 1560, Springer (1993). [Google Scholar]
- L. Nachbin, The Haar Integral. D. Van Nostrand Company, Canada (1965). [Google Scholar]
- L.C. Evans, Partial Differential Equations. American Mathematical Society, USA (1998). [Google Scholar]
- C. Bereanu and P. Jebelean, Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete Contin. Dyn. Syst. 33 (2013) 47–66. [CrossRef] [MathSciNet] [Google Scholar]
- C.O. Alves, J.V. Gonçalves and J.A. Santos, Strongly nonlinear multivalued elliptic equations on a bounded domain. J. Glob. Optim. 58 (2014) 565–593. [CrossRef] [Google Scholar]
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Springer, Berlin (1977). [CrossRef] [Google Scholar]
- I. Peral Alonso, Multiplicity of solutions for the p-laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste (1997). [Google Scholar]
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000). [Google Scholar]
- H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM, Philadelphia (2006). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.