Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 47 | |
DOI | https://doi.org/10.1051/cocv/2024057 | |
Published online | 24 March 2025 |
- Y. Zhu, Remarks on propagation of smallness for solutions of elliptic equations in the plane. Preprint arXiv:2304.09800 (2023). [Google Scholar]
- O. Kovrijkine, Some results related to the Logvinenko–Sereda theorem. Proc. Amer. Math. Soc. 129 (2001) 3037–3047. [MathSciNet] [Google Scholar]
- V. È. Kacnel’son, Equivalent norms in spaces of entire functions. Mat. Sb. 21 (1973) 33. [Google Scholar]
- P. Su, C. Sun and X. Yuan, Quantitative observability for one-dimensional Schrödinger equations with potentials. Preprint arXiv:2309.00963 (2023). [Google Scholar]
- J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society. (2007). [Google Scholar]
- J. Lions, Contrôlabilité exacte, perturbations et stabilisation de systemes distribués, Recherches en Mathématiques Appliquées, Vols. 1 and 2 (1988). [Google Scholar]
- M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Springer Science & Business Media (2009). [Google Scholar]
- G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Part. Diff. Equ. 20 (1995) 335–356. [CrossRef] [Google Scholar]
- K. Beauchard and K. Pravda-Starov, Null-controllability of hypoelliptic quadratic differential equations. J. Éc. polytech. Math. 5 (2018) 1–43. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gallaun, C. Seifert and M. Tautenhahn, Sufficient criteria and sharp geometric conditions for observability in banach spaces. SIAM J. Control Optim. 58 (2020) 2639–2657. [CrossRef] [MathSciNet] [Google Scholar]
- I. Nakić, M. Täufer, M. Tautenhahn and I. Veselić, Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM Control Optim. Calc. Var. 26 (2020) 54. [Google Scholar]
- G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations. ESAIM Control Optim. Calc. Var. 17 (2011) 1088–1100. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- E.B. Davies, Spectral Theory and Differential Operators, Vol. 42. Cambridge University Press (1995). [Google Scholar]
- J. Zhu and J. Zhuge, Spectral inequality for Schrödinger equations with power growth potentials. Preprint arXiv:2301.12338 (2023). [Google Scholar]
- A. Dicke, A. Seelmann and I. Veselic, Spectral inequality with sensor sets of decaying density for Schrödinger operators with power growth potentials. Preprint arXiv:2206.08682 (2022). [Google Scholar]
- J. Zhu, Spectral inequalities for Schrödinger equations with various potentials. Preprint arXiv:2403.08975 (2024). [Google Scholar]
- P. Alphonse and A. Seelmann, Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability. Preprint arXiv:2212.10842 (2022). [Google Scholar]
- J. Martin and K. Pravda-Starov, Spectral inequalities for combinations of Hermite functions and null-controllability for evolution equations enjoying Gelfand–Shilov smoothing effects. J. Inst. Math. Jussieu 22 (2023) 2533–2582. [Google Scholar]
- G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var. 14 (2008) 284–293. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Apraiz and L. Escauriaza, Null-control and measurable sets. ESAIM Control Optim. Calc. Var. 19 (2013) 239–254. [Google Scholar]
- J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16 (2014) 2433–2475. [CrossRef] [MathSciNet] [Google Scholar]
- N. Burq and I. Moyano, Propagation of smallness and control for heat equations. J. Eur. Math. Soc. 25 (2022) 1349–1377. [Google Scholar]
- L. Escauriaza, S. Montaner and C. Zhang, Analyticity of solutions to parabolic evolutions and applications. SIAM J. Math. Anal. 49 (2017) 4064–4092. [CrossRef] [MathSciNet] [Google Scholar]
- J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. 18 (2012) 712–747. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141 (1998) 297–329. [Google Scholar]
- Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators. ESAIM Control Optim. Calc. Var. 19 (2013) 255–273. [Google Scholar]
- M. Rouveyrol, Spectral estimate for the Laplace–Beltrami operator on the hyperbolic half-plane. Preprint arXiv:2401.14977 (2024). [Google Scholar]
- M. Egidi and I. Veselić, Sharp geometric condition for null-controllability of the heat equation on ℝd and consistent estimates on the control cost. Arch. Math. (Basel) 111 (2018) 85–99. [CrossRef] [MathSciNet] [Google Scholar]
- G. Wang, M. Wang, C. Zhang and Y. Zhang, Observable set, observability, interpolation inequality and spectral inequality for the heat equation in ℝn. J. Math. Pures Appl. 126 (2019) 144–194. [CrossRef] [MathSciNet] [Google Scholar]
- G. Lebeau and I. Moyano, Spectral inequalities for the Schrödinger operator. Preprint arXiv:1901.03513 (2019). [Google Scholar]
- N. Burq and I. Moyano, Propagation of smallness and spectral estimates. Preprint arXiv:2109.06654 (2021). [Google Scholar]
- Y. Duan, H. Yu and C. Zhang, Quantitative unique continuation and observability on an equidistributed set for the diffusion equation in ℝn. Preprint arXiv:2108.04540 (2021). [Google Scholar]
- K. Beauchard, P. Jaming and K. Pravda-Starov, Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations. Pliska Stud. Math. 260 (2021) 1–43. [Google Scholar]
- A. Dicke, A. Seelmann and I. Veselić, Uncertainty principle for Hermite functions and null-controllability with sensor sets of decaying density. J. Fourier Anal. Appl. 29 (2023) 11. [CrossRef] [Google Scholar]
- M. Egidi and A. Seelmann, An abstract Logvinenko-Sereda type theorem for spectral subspaces. J. Math. Anal. Appl. 500 (2021) 125149. [CrossRef] [Google Scholar]
- P. Jaming and Y. Wang, Null-controllability of the generalized Baouendi–Grushin heat like equations. Preprint arXiv:2310.11215 (2023). [Google Scholar]
- A. Logunov and E. Malinnikova, Quantitative propagation of smallness for solutions of elliptic equations. In Proceedings of the International Congress of Mathematicians (ICM 2018) (in 4 Volumes). World Scientific (2018) 2391–2411. [Google Scholar]
- A. Sikora, On-diagonal estimates on Schroedinger semigroup kernels and reduced heat kernels. Comm. Math. Phys. 188 (1997) 233–249. [Google Scholar]
- K. Le Balc’h and J. Martin, Quantitative propagation of smallness and spectral estimates for the Schödinger operator. Preprint arXiv:2403.15299 (2024). [Google Scholar]
- A. Logunov, E. Malinnikova, N. Nadirashvili and F. Nazarov, The Landis conjecture on exponential decay. Preprint arXiv:2007.07034 (2020). [Google Scholar]
- K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48). Princeton University Press (2008). [Google Scholar]
- L.V. Ahlfors, Lectures on Quasiconformal Mappings, Vol. 38. American Mathematical Society (2006). [Google Scholar]
- A. Mori, On quasi-conformality and pseudo-analyticity. Trans. Amer. Math. Soc. 84 (1957) 56–77. [Google Scholar]
- W. Rudin, Real and Complex Analysis, Vol. 156. McGraw-Hill (1987). [Google Scholar]
- O. Friedland and Y. Yomdin, (s, p)-Valent Functions, Springer, Cham (2017) 123–136. [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Vol. 224. Springer (1977). [Google Scholar]
- F.A. Berezin and M. Shubin, The Schrödinger Equation, Vol. 66. Kluwer, Dordrecht (1991). [Google Scholar]
- J. Gagelman and H. Yserentant, A spectral method for Schrödinger equations with smooth confinement potentials. Numer. Math. 122 (2012) 383–398. [Google Scholar]
- D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions. Harmonic analysis and partial differential equations (Chicago, IL, 1996). Chicago Lect. Math. (1999) 223–239. [Google Scholar]
- E.H. Lieb and W.E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. The Stability of Matter: From Atoms to Stars: Selecta of Elliott H. Lieb (2001) 205–239. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.