Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 25
Number of page(s) 45
DOI https://doi.org/10.1051/cocv/2025015
Published online 24 March 2025
  1. N. Abatangelo, S. Dipierro and E. Valdinoci, A gentle invitation to the fractional world, arXiv e-prints, posted on 2024, arXiv:2411.18238, available at 2411.18238. [Google Scholar]
  2. M.M. Fall and S. Jarohs, Overdetermined problems with fractional Laplacian. ESAIM Control Optim. Calc. Var. 21 (2015) 924–938. [Google Scholar]
  3. S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion Equations. Discrete Contin. Dyn. Syst. 34 (2014) 2581–2615. [Google Scholar]
  4. X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the Boundary. J. Math. Pures Appl. 101 (2014) 275–302. (English, with English and French summaries). [Google Scholar]
  5. X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213 (2014) 587–628. [Google Scholar]
  6. N. Soave and E. Valdinoci, Overdetermined problems for the fractional Laplacian in exterior and annular Sets. J. Anal. Math. 137 (2019) 101–134. [Google Scholar]
  7. G. Grubb, Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential Operators. Anal. PDE 7 (2014) 1649–1682. [MathSciNet] [Google Scholar]
  8. G. Grubb, Green’s formula and a Dirichlet-to-Neumann operator for fractional-order pseudodifferential Operators. Commun. Part. Differ. Equ. 43 (2018) 750–789. [Google Scholar]
  9. E. Montefusco, B. Pellacci and G. Verzini, Fractional diffusion with Neumann boundary conditions: the logistic equation. Discrete Contin. Dyn. Syst. Ser. B 18 (2013) 2175–2202. [Google Scholar]
  10. P.R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional Operators. Commun. Part. Differ. Equ. 35 (2010) 2092–2122. [CrossRef] [Google Scholar]
  11. P.R. Stinga and B. Volzone, Fractional semilinear Neumann problems arising from a fractional Keller-Segel model. Calc. Var. Part. Differ. Equ. 54 (2015) 1009–1042. [Google Scholar]
  12. N. Abatangelo and E. Valdinoci, Getting Acquainted with the Fractional Laplacian, Contemporary Research in Elliptic PDEs and Related Topics. Springer INdAM Series, vol. 33. Springer, Cham (2019) 1–105. [Google Scholar]
  13. S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33 (2017) 377–416. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Dipierro, E. Proietti Lippi and E. Valdinoci, (Non)local logistic equations with Neumann Conditions. Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023) 1093–1166. [MathSciNet] [Google Scholar]
  15. S. Dipierro and E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes. Phys. A 575 (2021) Paper No. 126052, 20. [Google Scholar]
  16. S. Dipierro, K. Perera, C. Sportelli and E. Valdinoci, An existence theory for superposition operators of mixed order subject to jumping nonlinearities. Nonlinearity 37 (2024) Paper No. 055018, 27. [Google Scholar]
  17. S. Dipierro, K. Perera, C. Sportelli and E. Valdinoci, An existence theory for nonlinear superposition operators of mixed fractional order. Commun. Contemp. Math. (2024), DOI: https://arxiv.org/10.1142/S0219199725500051. [Google Scholar]
  18. S. Dipierro, E. Proietti Lippi, C. Sportelli and E. Valdinoci, A general theory for the (s, p)- superposition of nonlinear fractional operators. Nonlinear Anal. Real World Appl. 82 (2025) Paper No. 104251, 24. [Google Scholar]
  19. K. Perera and C. Sportelli, A multiplicity result for critical elliptic problems involving differences of local and nonlocal operators. Topol. Methods Nonlinear Anal. 63 (2024) 717–731. [Google Scholar]
  20. J. Jost, Partial Differential Equations, 3rd edn. Graduate Texts in Mathematics, vol. 214. Springer, New York (2013). [Google Scholar]
  21. S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles. Commun. Part. Differ. Equ. 47 (2022) 585–629. [Google Scholar]
  22. X. Cabré, S. Dipierro and E. Valdinoci, The Bernstein technique for integro-differential equations. Arch. Ration. Mech. Anal. 243 (2022) 1597–1652. [MathSciNet] [Google Scholar]
  23. Z.-Q. Chen, P. Kim, R. Song and Z. Vondraček, Sharp Green function estimates for Δ + Δα/2 in C1,1 open sets and their applications. Illinois J. Math. 54 (2010) 981–1024. MR2928344. [MathSciNet] [Google Scholar]
  24. Z.-Q. Chen, P. Kim, R. Song and Z. Vondraček, Boundary Harnack principle for Δ + Δα/2. Trans. Amer. Math. Soc. 364 (2012) 4169–4205. [Google Scholar]
  25. C. De Filippis and G. Mingione, Gradient regularity in mixed local and nonlocal problems. Math. Ann. 388 (2024) 261–328. [Google Scholar]
  26. F. del Teso, J. Endal and E.R. Jakobsen, On distributional solutions of local and nonlocal problems of porous medium type. C. R. Math. Acad. Sci. Paris 355 (2017) 1154–1160. [Google Scholar]
  27. E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differ. Equ. 212 (2005) 278–318. [Google Scholar]
  28. G. Barles, E. Chasseigne, A. Ciomaga and C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations. J. Differ. Equ. 252 (2012) 6012–6060. [Google Scholar]
  29. I.H. Biswas, E.R. Jakobsen and K.H. Karlsen, Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim. 62 (2010) 47–80. [MathSciNet] [Google Scholar]
  30. X. Cabré and J. Serra, An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions. Nonlinear Anal. 137 (2016) 246–265. [Google Scholar]
  31. S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, A Hong–Krahn–Szegö inequality for mixed local and nonlocal operators. Math. Eng. 5 (2023) Paper No. 014, 25. [Google Scholar]
  32. S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, A Faber–Krahn inequality for mixed local and nonlocal operators. J. Anal. Math. 150 (2023) 405–448. [Google Scholar]
  33. I.H. Biswas, E.R. Jakobsen and K.H. Karlsen, Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE. SIAM J. Numer. Anal. 48 (2010) 1110–1135. [Google Scholar]
  34. R. de la Llave and E. Valdinoci, A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009) 1309–1344. [MathSciNet] [Google Scholar]
  35. D. Blazevski and D. del-Castillo-Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless Cantori and nondiffusive transport. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87 (2013) 063106. [Google Scholar]
  36. S. Dipierro, E. Proietti Lippi and E. Valdinoci, Linear theory for a mixed operator with Neumann Conditions. Asymptot. Anal. 128 (2022) 571–594. [MathSciNet] [Google Scholar]
  37. D. Mugnai and E. Proietti Lippi, On mixed local-nonlocal operators with (α, β)-Neumann conditions. Rend. Circ. Mat. Palermo, II 71 (2022) 1035–1048. [Google Scholar]
  38. G. Foghem and M. Kassmann, A general framework for nonlocal Neumann problems. Commun. Math. Sci. 22 (2024) 15–66. [Google Scholar]
  39. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  40. L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63 (2010) 1111–1144. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.