Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 55
Number of page(s) 38
DOI https://doi.org/10.1051/cocv/2025040
Published online 08 July 2025
  1. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Modern Birkhäuser Classics. Birkhäuser, Boston (1997). [Google Scholar]
  2. W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2006). [Google Scholar]
  3. A. Friedman, Differential games. Pure and Applied Mathematics, vol. XXV. Wiley-Interscience, New York (1971). [Google Scholar]
  4. R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. John Wiley and Sons, New York (1965). [Google Scholar]
  5. N.N. Krasovskii and A.I. Subbotin, Game-theoretical control problems. Springer Ser. Soviet Math. Springer, New York (1988). [Google Scholar]
  6. J. Yong, Differential Games: A Concise Introduction. World Scientific, Hackensack, New Jersey (2015). [Google Scholar]
  7. R.J. Elliott and N.J. Kalton, The existence of value in differential games. Memoirs of AMS, no. 126. American Mathematical Society, Providence, R.I. (1972). [Google Scholar]
  8. A.I. Subbotin, Generalized solutions of first order PDEs: the dynamical optimization perspective. Systems Control Found. Appl. Birkhäuser, Basel (1995). [Google Scholar]
  9. M.G. Crandall, L.C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487-582. [Google Scholar]
  10. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. [Google Scholar]
  11. V.L. Pasikov, Extremal aiming in a game of linear Volterra systems. Differ. Equ. 22 (1986) 907-909. [Google Scholar]
  12. V.L. Pasikov, Approach of single-type objects, evolution of which is described by Volterra systems. Univ. Proc. Volga Region Phys. Math. Sci. 3 (2015) 100-111. [Google Scholar]
  13. Y. You, Quadratic integral games and causal synthesis. Trans. Amer. Math. Soc. 352 (2000) 2737-2764. [Google Scholar]
  14. A.V. Chernov, On existence of e-equilibrium in Volterra functional operator games without discrimination. Mat. Teor. Igr Pril. 4 (2012) 74-92 (in Russian). [Google Scholar]
  15. A.V. Chernov, On Volterra functional operator games on a given set. Autom. Remote Control 75 (2014) 787-803. [CrossRef] [MathSciNet] [Google Scholar]
  16. L.A. Petrosjan, Differential games of pursuit Ser. Optim., vol. 2. World Scientific Publishing, Singapore (1993). [Google Scholar]
  17. D.A. Carlson, Open-loop Nash equilibria for dynamic games involving Volterra integral equations. Annals of the International Society of Dynamic Games, vol. 15. Birklmuser, Cham (2017) 169-197. [CrossRef] [Google Scholar]
  18. J.F. Bonnans, C. de la Vega and X. Dupuis, First- and second-order optimality conditions for optimal control problems of state constrained integral equations. J. Optim. Theory Appl. 159 (2013) 1-40. [Google Scholar]
  19. A.V. Dmitruk and N.P. Osmolovski, Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Math. Control Relat. Fields 7 (2017) 507-535. [Google Scholar]
  20. S.A. Belbas, A new method for optimal control of Volterra integral equations. Appl. Math. Comput. 189 (2007) 1902-1915. [Google Scholar]
  21. S.A. Belbas, A reduction method for optimal control of Volterra integral equations. Appl. Math. Comput. 197 (2008) 880-890. [Google Scholar]
  22. J.J. Gasimov, J.A. Asadzade and N.I. Mahmudov, Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations. Qual. Theory Dyn. Syst. 23 (2024) 213. [Google Scholar]
  23. S. Han, P. Lin and J. Yong, Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations. Math. Control Relat. Fields 13 (2023) 1282-1317. [Google Scholar]
  24. D. Idczak, Optimal control problem governed by a highly nonlinear singular Volterra equation: existence of solutions and maximum principle. Optim. Control. Appl. Meth. 45 (2024) 274-301. [Google Scholar]
  25. P. Lin and J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle. SIAM J. Control Optim. 58 (2020) 136-164. [Google Scholar]
  26. J. Moon, Maximum principle for state-constrained optimal control problems of Volterra integral equations having singular and nonsingular kernels. Preprint arXiv:2203.05165 (2022). [Google Scholar]
  27. J. Moon, On the optimality condition for optimal control of Caputo fractional differential equations with state constraints. IFAC-PapersOnLine 56 (2023) 216-221. [Google Scholar]
  28. H. Brunner, Volterra integral equations: an introduction to theory and applications. Cambridge Monographs on Applied and Computational Mathematics, vol. 30. Cambridge University Press, Cambridge (2017). [Google Scholar]
  29. C. Corduneanu, Integral Equations and Applications. Cambridge University Press, Cambridge (1991). [Google Scholar]
  30. R. Gorenflo and S. Vessella, Abel integral equations: analysis and applications. Lectures Notes in Mathematics, vol. 1461. Springer, Berlin (1991). [Google Scholar]
  31. F.G. Tricomi, Integral Equations. Interscience Publishers, New York (1957). [Google Scholar]
  32. L. Bourdin, Cauchy-Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems. Differ. Integral Equ. 31 (2018) 559-594. [Google Scholar]
  33. H. Kaise, Path-dependent differential games of inf-sup type and Isaacs partial differential equations. Proceedings of the 54th IEEE Conference on Decision and Control. Osaka, Japan (2015) 1972-1977. [Google Scholar]
  34. N.Yu. Lukoyanov, A Hamilton-Jacobi type equation in control problems with hereditary information. J. Appl. Math. Mech. 64 (2000) 243-253. [Google Scholar]
  35. Yu. S. Osipov, On the theory of differential games of systems with aftereffect. J. Appl. Math. Mech. 35 (1971) 262-272. [Google Scholar]
  36. M.I. Gomoyunov, Differential games for fractional-order systems: Hamilton-Jacobi-Bellman-Isaacs equation and optimal feedback strategies. Mathematics 9 (2021) 1667. [Google Scholar]
  37. L.C. Evans and P.E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi- Isaacs equations. Indiana Univ. Math. J. 33 (1984) 773-797. [Google Scholar]
  38. A.V. Kim, Functional differential equations: application of i-smooth calculus. Math. Appl., vol. 479. Kluwer Academic Publishers, Dordrecht, The Netherlands (1999). [Google Scholar]
  39. M.I. Gomoyunov, N.Yu. Lukoyanov and A.R. Plaksin, Path-dependent Hamilton-Jacobi equations: the minimax solutions revised. Appl. Math. Optim. 84 (2021) S1087-S1117. [Google Scholar]
  40. M.I. Gomoyunov, Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems. SIAM J. Control Optim. 58 (2020) 3185-3211. [Google Scholar]
  41. H. Kaise, Convergence of discrete-time deterministic games to path-dependent Isaacs partial differential equations under quadratic growth conditions. Appl. Math. Optim. 86 (2022) 13. [Google Scholar]
  42. N.Yu. Lukoyanov, Strategies for aiming in the direction of invariant gradients. J. Appl. Math. Mech. 68 (2004) 561-574. [Google Scholar]
  43. A.R. Plaksin, Viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations for time-delay systems. SIAM J. Control Optim. 59 (2021) 1951-1972. [Google Scholar]
  44. M.I. Gomoyunov, On viscosity solutions of path-dependent Hamilton-Jacobi-Bellman-Isaacs equations for fractional-order systems. J. Differ. Equ. 399 (2024) 335-362. [Google Scholar]
  45. M.I. Gomoyunov and N.Yu. Lukoyanov, Differential games in fractional-order systems: inequalities for directional derivatives of the value functional. Proc. Steklov Inst. Math. 315 (2021) 65-84. [Google Scholar]
  46. N.Yu. Lukoyanov, On viscosity solution of functional Hamilton-Jacobi type equations for hereditary systems. Proc. Steklov Inst. Math. 259 (2007) S190-S200. [Google Scholar]
  47. H.M. Soner, On the Hamilton-Jacobi-Bellman equations in Banach spaces. J. Optim. Theory Appl. 57 (1988) 429-437. [Google Scholar]
  48. A. Cosso, F. Gozzi, M. Rosestolato and F. Russo, Path-dependent Hamilton-Jacobi-Bellman equation: uniqueness of Crandall-Lions viscosity solutions. Preprint arXiv:2107.05959 (2021). [Google Scholar]
  49. A. Cosso and F. Russo, Crandall-Lions viscosity solutions for path-dependent PDEs: The case of heat equation. Bernoulli 28 (2022) 481-503. [CrossRef] [MathSciNet] [Google Scholar]
  50. A. Cosso and F. Russo, Strong-viscosity solutions: classical and path-dependent PDEs. Osaka J. Math. 56 (2019) 323-373. [Google Scholar]
  51. I. Ekren, C. Keller, N. Touzi and J. Zhang, On viscosity solutions of path dependent PDEs. Ann. Probab. 42 (2014) 204-236. [CrossRef] [MathSciNet] [Google Scholar]
  52. I. Ekren, N. Touzi and J. Zhang, Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part I. Ann. Probab. 44 (2016) 1212-1253. [MathSciNet] [Google Scholar]
  53. C. Keller, Viscosity solutions of path-dependent integro-differential equations. Stochastic Process. Appl. 126 (2016) 2665-2718. [Google Scholar]
  54. Z. Ren, N. Touzi and J. Zhang, An overview of viscosity solutions of path-dependent PDEs. Springer Proc. Math. Stat., vol. 100. Springer, Cham (2014) 397-453. [Google Scholar]
  55. J. Zhou, A class of infinite-horizon stochastic delay optimal control problems and a viscosity solution to the associated HJB equation. ESAIM: COCV 24 (2018) 639-676. [Google Scholar]
  56. J. Zhou, Viscosity solutions to first order path-dependent Hamilton-Jacobi-Bellman equations in Hilbert space. Automatica 142 (2022) 110347. [CrossRef] [Google Scholar]
  57. G.G. Garnysheva and A.I. Subbotin, Strategies of minimax aiming in the direction of the quasigradient. J. Appl. Math. Mech. 58 (1994) 575-581. [Google Scholar]
  58. M.I. Gomoyunov, On optimal positional strategies in fractional optimal control problems. Mathematical Optimization Theory and Operations Research. Springer, Cham (2023) 255-265. [Google Scholar]
  59. E. Zeidler, Nonlinear Functional Analysis and its Applications, I: fixed-point theorems. Springer, New York (1986). [Google Scholar]
  60. E.C. Titchmarsh, The zeros of certain integral functions. Proc. Lond. Math. Soc. 25 (1926) 283-302. [Google Scholar]
  61. R. Doss, An elementary proof of Titchmarsh's convolution theorem. Proc. Amer. Math. Soc. 104 (1988) 181-184. [Google Scholar]
  62. M.I. Gomoyunov, Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Fract. Calc. Appl. Anal. 21 (2018) 1238-1261. [Google Scholar]
  63. W. Rudin, Functional Analysis, 2nd edn. McGraw-Hill, New York (1991). [Google Scholar]
  64. A.M. Bruckner, Differentiation of real functions, 1st ed. Lecture Notes in Mathematics, vol. 659. Springer, Berlin (1978). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.