Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 56 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/cocv/2025041 | |
Published online | 08 July 2025 |
- E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55-61. [CrossRef] [Google Scholar]
- J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]
- S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Rep. 37 (1991) 61-74. [Google Scholar]
- N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. [Google Scholar]
- F. Antonelli, Backward-forward stochastic differential equations. Ann. Appl. Probab. 3 (1993) 777-793. [CrossRef] [MathSciNet] [Google Scholar]
- J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly—a four step scheme. Probab. Theory Related Fields 98 (1994) 339-359. [Google Scholar]
- F. Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stochastic Process. Appl. 99 (2002) 209-286. [Google Scholar]
- J. Zhang, The wellposedness of FBSDEs. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 927-940. [MathSciNet] [Google Scholar]
- Y. Hu and S. Peng, Solution of forward-backward stochastic differential equations. Probab. Theory Related Fields 103 (1995) 273-283. [CrossRef] [MathSciNet] [Google Scholar]
- J. Yong, Finding adapted solutions of forward-backward stochastic differential equations: method of continuation. Probab. Theory Related Fields 107 (1997) 537-572. [Google Scholar]
- S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825-843. [CrossRef] [MathSciNet] [Google Scholar]
- E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Related Fields 114 (1999) 123-150. [Google Scholar]
- J. Ma, Z. Wu, D. Zhang and J. Zhang, On well-posedness of forward-backward SDEs—a unified approach. Ann. Appl. Probab. 25 (2015) 2168-2214. [MathSciNet] [Google Scholar]
- M. Kac, Foundations of kinetic theory, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III. University California Press, Arlington (1956) 171-197. [Google Scholar]
- H.P. McKean, Propagation of chaos for a class of non-linear parabolic equations, in Stochastic Differential Equations. Air Force Office of Scientific Research, Arlington (1967) 41-57. [Google Scholar]
- A.-S. Sznitman, Topics in propagation of chaos, in Ecole d'Eté de Probabilités de Saint-Flour XIX—1989. Springer, Berlin (1991) 165-251. [Google Scholar]
- B. Jourdain, S. Mekéard and W.A. Woyczynski, Nonlinear SDEs driven by Levy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 1-29. [MathSciNet] [Google Scholar]
- D. Lacker, On a strong form of propagation of chaos for McKean-Vlasov equations. Electron. Commun. Probab. 23 (2018) 1-11. [Google Scholar]
- P.E. Chaudru de Raynal, Strong well posedness of McKean-Vlasov stochastic differential equations with Holder drift. Stochastic Process. Appl. 130 (2020) 79-107. [Google Scholar]
- Y. Mishura and A. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations. Theory Probab. Math. Statist. (2020) 59-101. [Google Scholar]
- R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations: a limit approach, Ann. Probab. 37 (2009) 1524-1565. [Google Scholar]
- R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl. 119 (2009) 3133-3154. [Google Scholar]
- J. Li, Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs. Stochastic Process. Appl. 128 (2018) 3118-3180. [Google Scholar]
- M. Lauriere and L. Tangpi, Backward propagation of chaos. Electron. J. Probab. 27 (2022) 1-30. [Google Scholar]
- D. Possama'i and L. Tangpi, Non-asymptotic convergence rates for mean-field games weak formulation and Mckean- Vlasov BSDEs. preprint arXiv:2105.00484 (2021) 1-47. [Google Scholar]
- Y. Hu, R. Moreau and F. Wang, General mean reflected backward stochastic differential equations. J. Theoret. Probab. 37 (2024) 877-904. [Google Scholar]
- R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18 (2013) 1-15. [CrossRef] [MathSciNet] [Google Scholar]
- R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43 (2015) 2647-2700. [Google Scholar]
- A. Bensoussan, S.C.P. Yam and Z. Zhang, Well-posedness of mean-field type forward-backward stochastic differential equations. Stochastic Process. Appl. 125 (2015) 3327-3354. [Google Scholar]
- Y. Hu, J. Huang and T. Nie, Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control Optim. 56 (2018) 2835-2877. [Google Scholar]
- M. Li, T. Nie and Z. Wu, Linear-quadratic large-population problem with partial information: Hamiltonian approach and Riccati approach. SIAM J. Control Optim. 61 (2023) 2114-2139. [Google Scholar]
- R. Tian and Z. Yu, Mean-field type FBSDEs under domination-monotonicity conditions and application to LQ problems. SIAM J. Control Optim. 61 (2023) 22-46. [Google Scholar]
- Y. Chen, T. Nie and S. Wang, Fully-coupled mean-field FBSDE and maximum principle for related optimal control problem. Syst. Control Lett. 177 (2023) 1-15. [Google Scholar]
- A. Bensoussan, S. Chen and S. P. Sethi, The maximum principle for global solutions of stochastic Stackelberg differential games. SIAM J. Control Optim. 53 (2015) 1956-1981. [Google Scholar]
- R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I: Mean Field FBSDEs, Control, and Games. Springer, Cham (2018). [Google Scholar]
- H. Von Stackelberg, Marktform Und Gleichgewicht. Springer, Berlin (1934). [Google Scholar]
- J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809-2838. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.