Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 54 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/cocv/2025038 | |
Published online | 24 June 2025 |
- D. Anderson and B. Moore, Linear Optimal Control. Prentice-Hall, Englewood Cliffs, NJ (1971). [Google Scholar]
- M. Rami, X. Chen, J. Moore and X. Zhou, Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ Controls. IEEE Trans. Automatic 46 (2001) 428–440. [CrossRef] [MathSciNet] [Google Scholar]
- H.S. Zhang, L. Li, J.J. Xu and M.Y. Fu, Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise. IEEE Trans. Automatic Control 60 (2015) 2599–2613. [CrossRef] [MathSciNet] [Google Scholar]
- N.W. Bauer, M. Donkers, N. van de Wouw and W. Heemels, Decentralized observer-based control via networked communication. Automatica 49 (2013) 2074–2086. [CrossRef] [MathSciNet] [Google Scholar]
- F. Blaabjerg, R. Teodorescu, M. Liserre and A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53 (2006) 1398–1409. [CrossRef] [Google Scholar]
- B. Hoogenkamp, S. Farshidi, R.Y. Xin, Z. Shi, P. Chen and Z.M. Zhao, A decentralized service control framework for decentralized applications in cloud environments. Service-Oriented Cloud Comput. 13226 (2022) 65–73. [CrossRef] [Google Scholar]
- Q.P. Ha and H. Trinh, Observer-based control of multi-agent systems under decentralized information structure. Int. J. Syst. Sci. 35 (2004) 719–728. [CrossRef] [Google Scholar]
- D. Gorges, Distributed adaptive linear quadratic control using distributed reinforcement learning. IFAC- PapersOnLine 52 (2019) 218–223. [CrossRef] [Google Scholar]
- H. Witsenhausen, A counterexample in stochastic optimum control. SIAM J. Control Optim. 6 (1968) 131–147. [CrossRef] [Google Scholar]
- E. Davison, N. Rau and F. Palmay, The optimal decentralized control of a power system consisting of a number of interconnected synchronous machines. Int. J. Control 18 (1973) 1313–1328. [CrossRef] [Google Scholar]
- E. Davison, The robust decentralized control of a general servomechanism problem. IEEE Trans. Automatic Control AC-21 (1976) 14–24. [CrossRef] [MathSciNet] [Google Scholar]
- T. Yoshikawa, Dynamic programming approach to decentralized stochastic control problem. IEEE Trans. Automatic Control 20 (1975) 796–797. [CrossRef] [MathSciNet] [Google Scholar]
- J. Swigart and S. Lall, An explicit state-space solution for a deffcentralized two-player optimal linear-quadratic regulator. Am. Control Conf. (2010) 6385–6390. [Google Scholar]
- X. Liang, J.J. Xu, H.X. Wang and H.S. Zhang, Decentralized output-feedback control with asymmetric one-step delayed information. IEEE Trans. Automatic Control 68 (2023) 7871–7878. [CrossRef] [MathSciNet] [Google Scholar]
- A. Nayyar, A. Mahajan and T. Teneketzis, Decentralized stochastic control with partial history sharing: a common information approach. IEEE Trans. Automatic Control 58 (2013) 1644–1658. [CrossRef] [MathSciNet] [Google Scholar]
- A. Nayyar, A. Mahajan and T. Teneketzis, Optimal control strategies in delayed sharing information structures. IEEE Trans. Automatic Control 56 (2011) 1606–1620. [CrossRef] [MathSciNet] [Google Scholar]
- X. Liang, Q.Q. Qi, H.S. Zhang and L.H. Xie, Decentralized control for networked control systems with asymmetric information. IEEE Trans. Automatic Control 67 (2022) 2067–2083. [Google Scholar]
- B.C. Wang, X. Yu and H.L. Dong, Social optima in linear quadratic mean field control with unmodeled dynamics and multiplicative noise. Asian J. Control 23 (2019) 1572–1582. [Google Scholar]
- M. Pachter, LQG dynamic games with a control-sharing information pattern. Dyn. Games Applic. 7 (2017) 289–322. [CrossRef] [Google Scholar]
- Y. Sun, J.J. Xu and H.S. Zhang, Feedback Nash equilibrium with packet dropouts in networked control systems. IEEE Trans. Circuits Syst. II: Express Briefs 70 (2022) 1024–1028. [Google Scholar]
- Z.P. Li, M.Y. Fu, H.S. Zhang and Z.Z. Wu, Mean field stochastic linear quadratic games for continuum-parameterized multi-agent systems. J. Franklin Inst. 355 (2018) 5240–5255. [CrossRef] [MathSciNet] [Google Scholar]
- T. Basar, Two-criteria LQG decision problems with one-step delay observation sharing pattern. Inform. Control 38 (1978) 21–50. [CrossRef] [MathSciNet] [Google Scholar]
- P. George, On the linear-quadratic-Gaussian Nash game with one-step delay observation sharing pattern. IEEE Trans. Automatic Control 27 (1982) 1065–1071. [CrossRef] [MathSciNet] [Google Scholar]
- F. Suzumura and K. Mizukami, Closed-loop strategy for Stackelberg game problem with incomplete information structures. IFAC 12th Triennial World Congress, Australia (1993) 413–418. [Google Scholar]
- M.B. Klompstra, Nash equilibria in risk-sensitive dynamic games. IEEE Trans. Automatic Control 45 (2000) 13971401. [CrossRef] [MathSciNet] [Google Scholar]
- H. Mukaidani, H. Xu and V. Dragan, Static output-feedback incentive Stackelberg game for discrete-time Markov jump linear stochastic systems with external disturbance. IEEE Control Syst. Lett. 2 (2016) 701–706. [Google Scholar]
- H.S. Witsenhausen, A counterexample in stochastic optimum control. SIAM J. Control Optim. 6 (1968) 138–147. [Google Scholar]
- S.R. Chowdhury, X.Y. Zhou and N. Shroff, Adaptive control of differentially private linear quadratic systems. IEEE Int. Symp. Inform. Theory (2021) 485–490. [Google Scholar]
- Y. Sun, H.D. Li, J.J. Xu and H.S. Zhang, Optimal linear closed-loop Stackelberg strategy with asymmetric information. J. Optim. Theory Appl. 199 (2023) 1158–1187. [CrossRef] [MathSciNet] [Google Scholar]
- J.J. Xu and H.S. Zhang, Decentralized control of linear systems with private input and measurement information. arXiv:2305.14921 (2023) 1–6. [Google Scholar]
- D. Castanon and M. Athans, On stochastic dynamic Stackelberg strategies. Automatica 12 (1976) 177–183. [CrossRef] [MathSciNet] [Google Scholar]
- N. Kumar, S. Misra, J. Rodrigues and M. Obaidat, Coalition games for spatio-temporal big data analytics in internet-of-vehicles environment: a comparative analysis. IEEE Internet Things J. 2 (2015) 310–320. [CrossRef] [Google Scholar]
- A. Bensoussan, S. Chen and S.P. Sethi, The maximum principle for global solutions of stochastic Stackelberg differential games. SIAM J. Control Optim. 53 (2015) 1965–1981. [Google Scholar]
- B.D.O. Anderson, J. Moore and M. Eslami, Optimal Filtering. Prentice-Hall, Englewood Cliffs (1978). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.