Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 33
Number of page(s) 58
DOI https://doi.org/10.1051/cocv/2025022
Published online 31 March 2025
  1. A. Bensoussan, K.C.J. Sung, S.C.P. Yam and S.P. Yung, Linear-quadratic mean field games. J. Optim. Theory Appl. 169 (2016) 496–529. [Google Scholar]
  2. A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, Vol. 101. Springer (2013). [Google Scholar]
  3. R. Carmona, F. Delarue and A. Lachapelle, Control of Mckean-Vlasov dynamics versus mean field games. Math. Financial Econ. 7 (2013) 131–166. [Google Scholar]
  4. H. Pham, Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications. Probab. Uncertain. Quant. Risk 1 (2016) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809–2838. [Google Scholar]
  6. Q. Lü, Stochastic linear quadratic optimal control problems for mean-field stochastic evolution equations. ESAIM Control Optim. Calc. Var. 26 (2020) 127. [Google Scholar]
  7. D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63 (2011) 341–356. [Google Scholar]
  8. J. Li, Stochastic maximum principle in the mean-field controls. Automatica 48 (2012) 366–373. [Google Scholar]
  9. R. Buckdahn, B. Djehiche and J. Li, A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64 (2011) 197–216. [Google Scholar]
  10. B. Acciaio, J. Backhoff-Veraguas and R. Carmona, Extended mean field control problems: stochastic maximum principle and transport perspective. SIAM J. Control Optim. 57 (2019) 3666–3693. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Buckdahn, J. Li and J. Ma, A mean-field stochastic control problem with partial observations. Ann. Appl. Probab. 27 (2017) 3201–3245. [Google Scholar]
  12. R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled Mckean–Vlasov dynamics. Ann. Probab. 43 (2015) 2647–2700. [CrossRef] [MathSciNet] [Google Scholar]
  13. S.L. Nguyen, D.T. Nguyen and G. Yin, A stochastic maximum principle for switching diffusions using conditional mean-fields with applications to control problems. ESAIM Control Optim. Calc. Var. 26 (2020) 69. [Google Scholar]
  14. R. Buckdahn, J. Li, S. Peng and C. Rainer, Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 (2017) 824–878. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37 (2009) 1524–1565. [Google Scholar]
  16. R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Processes Appl. 119 (2009) 3133–3154. [Google Scholar]
  17. R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18 (2013) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Bensoussan, S.C.P. Yam and Z. Zhang, Well-posedness of mean-field type forward–backward stochastic differential equations. Stoch. Processes Appl. 125 (2015) 3327–3354. [Google Scholar]
  19. A. Bensoussan, J. Frehse and S.C.P. Yam, The master equation in mean field theory. J. Math. Pures Appl. 103 (2015) 1441–1474. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Bensoussan, J. Frehse and S.C.P. Yam, On the interpretation of the master equation. Stoch. Processes Appl. 127 (2017) 2093–2137. [Google Scholar]
  21. M. Laurière and O. Pironneau, Dynamic programming for mean-field type control. Comptes Rendus Math. 352 (2014) 707–713. [Google Scholar]
  22. A. Cosso, F. Gozzi, I. Kharroubi, H. Pham and M. Rosestolato, Optimal control of path-dependent McKean–Vlasov SDEs in infinite-dimension. Ann. Appl. Probab. 33 (2023) 2863–2918. [MathSciNet] [Google Scholar]
  23. A. Cosso, F. Gozzi, I. Kharroubi, H. Pham and M. Rosestolato, Master Bellman equation in the Wasserstein space: uniqueness of viscosity solutions. Trans. Am. Math. Soc. 377 (2024) 31–83. [Google Scholar]
  24. M.F. Djete, D. Possamaï and X. Tan, Mckean–Vlasov optimal control: the dynamic programming principle. Ann. Probab. 50 (2022) 791–833. [MathSciNet] [Google Scholar]
  25. H. Pham and X. Wei, Dynamic programming for optimal control of stochastic Mckean–Vlasov dynamics. SIAM J. Control Optim. 55 (2017) 1069–1101. [Google Scholar]
  26. H. Pham and X. Wei, Bellman equation and viscosity solutions for mean-field stochastic control problem. ESAIM Control Optim. Calc. Var. 24 (2018) 437–461. [Google Scholar]
  27. C. Wu and J. Zhang, Viscosity solutions to parabolic master equations and McKean–Vlasov SDEs with closed-loop controls. Ann. Appl. Probab. 30 (2020) 936–986. [MathSciNet] [Google Scholar]
  28. C. Mou and J. Zhang, Wellposedness of second order master equations for mean field games with nonsmooth data. Mem. Am. Math. Soc. 302 (2021) 1–86. [Google Scholar]
  29. G. Ciampa and F. Rossi, Vanishing viscosity in mean-field optimal control. ESAIM Control Optim. Calc. Var. 29 (2023) 29. [Google Scholar]
  30. M. Bardi and M. Fischer, On non-uniqueness and uniqueness of solutions in finite-horizon mean field games. ESAIM Control Optim. Calc. Var. 25 (2019) 44. [Google Scholar]
  31. W. Gangbo, A.R. Mészáros, C. Mou and J. Zhang, Mean field games master equations with nonseparable Hamiltonians and displacement monotonicity. Ann. Probab. 50 (2022) 2178–2217. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Bensoussan, P.J. Graber and S.C.P. Yam, Control on Hilbert spaces and application to mean field type control theory. arXiv preprint arXiv:2005.10770 (2020). [Google Scholar]
  33. M. Huang, P.E. Caines and R.P. Malhamé, Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Automatic Control 57 (2012) 1736–1751. [Google Scholar]
  34. A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transport. Res. B: Methodol. 45 (2011) 1572–1589. [Google Scholar]
  35. T. Yang, P.G. Mehta and S.P. Meyn, A mean-field control-oriented approach to particle filtering. In Proceedings of the 2011 American Control Conference. IEEE (2011) 2037–2043. [Google Scholar]
  36. J.-F. Chassagneux, D. Crisan and F. Delarue, A probabilistic approach to classical solutions of the master equation for large population equilibria. Mem. Am. Math. Soc. 280 (2022) 1–123. [Google Scholar]
  37. A. Bensoussan and S.C.P. Yam, Control problem on space of random variables and master equation. ESAIM Control Optim. Calc. Var. 25 (2019) 1–36. [Google Scholar]
  38. P.-L. Lions, Seminar at college de France (2014). [Google Scholar]
  39. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I–II. Springer (2018). [Google Scholar]
  40. P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games:(ams-201). Princeton University Press (2019). [Google Scholar]
  41. A. Bensoussan, H.M. Tai, T.K. Wong and S.C.P. Yam, A control theoretical approach to mean field games and associated master equations. arXiv preprint arXiv:2402.01639 (2024). [Google Scholar]
  42. W. Gangbo and A.R. Mészáros, Global well-posedness of master equations for deterministic displacement convex potential mean field games. Commun. Pure Appl. Math. 75 (2022) 2685–2801. [Google Scholar]
  43. A. Bensoussan, T.K. Wong, S.C.P. Yam and H. Yuan, A theory of first order mean field type control problems and their equations. arXiv preprint arXiv:2305.11848 (2023). [Google Scholar]
  44. P.J. Graber and A.R. Mészáros, On monotonicity conditions for mean field games. J. Funct. Anal. 285 (2023) 110095. [Google Scholar]
  45. A. Bensoussan, Z. Huang, S. Tang and S.C.P. Yam, On mean field monotonicity conditions from control theoretical perspective. arXiv preprint (2024). [Google Scholar]
  46. P. Drábek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations. Springer Science & Business Media (2007). [Google Scholar]
  47. A. Bensoussan, H.M. Tai and S.C.P. Yam, Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations. arXiv preprint arXiv:2305.04019 (2023). [Google Scholar]
  48. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inform. Syst. 6 (2006) 221–252. [CrossRef] [Google Scholar]
  49. J.-M. Lasry and P.-L. Lions, Mean field games. Japanese J. Math. 2 (2007) 229–260. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.