Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 53 | |
Number of page(s) | 30 | |
DOI | https://doi.org/10.1051/cocv/2025035 | |
Published online | 24 June 2025 |
- N. El Karoui, Les Aspects Probabilistes Du Contrôle Stochastique, in Ecole d'Eté de Probabilités de Saint-Flour IX-1979, Vol., edited by A. Dold, B. Eckmann, and P. L. Hennequin. Springer Berlin Heidelberg, Berlin, Heidelberg (1981) 73–238. [Google Scholar]
- N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's. Ann. Probab. 25 (1997). [CrossRef] [Google Scholar]
- N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [Google Scholar]
- A.N. Shiryaev, Optimal Stopping Rules. Vol. 8 of Stochastic Modelling and Applied Probability. Springer New York, New York, NY (2007). [Google Scholar]
- G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary Problems. Lectures in Mathematics. ETH Zurich. Birkhauser Basel (2006). [Google Scholar]
- S. Hamadene and M. Jeanblanc, On the starting and stopping problem: application in reversible investments. Math. Oper. Res. 32 (2007) 182–192. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bensoussan and J.-L. Lions, Applications des inequations variationnelles en contrôle stochastique. Methodes mathématiques de l'informatique, 6. Dunod, Paris (1978). [Google Scholar]
- A. Bensoussan and J.-L. Lions, Applications of variational inequalities in stochastic control. in Studies in Mathematics and its Applications, Vol. 12. North-Holland Pub. Co.; Sole distributors for the U.S.A. and Canada, Elsevier North-Holland, Amsterdam; New York, NY (1982). [Google Scholar]
- J.-L. Menaldi, On the optimal impulse control problem for degenerate diffusions. SIAM J. Control Optim. 18 (1980) 722–739. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Menaldi, On the optimal stopping time problem for degenerate diffusions. SIAM J. Control Optim. 18 (1980) 697–721. [CrossRef] [MathSciNet] [Google Scholar]
- B.K. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions. Universitext. Springer, Berlin, New York (2005). [Google Scholar]
- M. Robin, Contrôle impulsionnel avec retard pour des processus de markov. Ann. Sci. Univ. Clermont. Math. 61 (1976) 115–128. [MathSciNet] [Google Scholar]
- M. Robin, Contrôle impulsionnel des processus de Markov. PhD thesis, Universite Paris Dauphine-Paris IX (1978). [Google Scholar]
- P. Dupuis and H. Wang, Optimal stopping with random intervention times. Adv. Appl. Probab. 34 (2002) 141–157. [CrossRef] [MathSciNet] [Google Scholar]
- J. Lempa, Optimal stopping with information constraint. Appl. Math. Optim. 66 (2012) 147–173. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Menaldi and M. Robin, On some optimal stopping problems with constraint. SIAM J. Control Optim. 54 (2016) 2650–2671. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Menaldi and M. Robin, On Some Impulse Control Problems with Constraint. SIAM J. Control Optim. 55 (2017) 3204–3225. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Menaldi and M. Robin, On optimal stopping and impulse control with constraint, in Modeling, Stochastic Control, Optimization, and Applications, Vol. 164, edited by G. Yin and Q. Zhang. Springer International Publishing, Cham (2019) 427–450. [CrossRef] [Google Scholar]
- F. Klebaner, Introduction to Stochastic Calculus with Applications, 3rd edn. Imperial College Press; Distributed by World Scientific Pub, London, Singapore; Hackensack, NJ (2012) [CrossRef] [Google Scholar]
- R.B. Ash and C. Doleans-Dade, Probability and Measure Theory, 2nd edn. Harcourt/Academic Press, San Diego (2000). [Google Scholar]
- O. Hernandez-Lerma and J.B. Lasserre, Discrete-Time Markov Control Processes. Springer New York, New York, NY (1996). [CrossRef] [Google Scholar]
- O. Hernândez-Lerma and J.B. Lasserre, Further Topics on Discrete-Time Markov Control Processes. Springer New York, New York, NY (1999). [CrossRef] [Google Scholar]
- O. Kallenberg, Foundations of Modern Probability. Probability Theory and Stochastic Modelling. Springer Nature, Switzerland AG (2021). https://doi.org/10.1007/978-3-030-61871-1. [CrossRef] [Google Scholar]
- R.M. Blumenthal and R.K. Getoor, Markov processes and potential theory. in Pure and Applied Mathematics, 2nd print edn., Vol 29. Acad. Pr, New York (1969). [Google Scholar]
- C. Tudor, Procesos estocasticos. Vol. 2 of Aportaciones matematicas Textos Nivel Avanzado, 3rd edn. Sociedad Matemâatica Mexicana, Mâexico (2002). [Google Scholar]
- I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Vol. 113 of Graduate Texts in Mathematics. Springer New York, New York, NY (1998). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.