Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 38 | |
DOI | https://doi.org/10.1051/cocv/2025016 | |
Published online | 24 March 2025 |
- G. Poliquin, Principal frequency of the p–Laplacian and the inradius of Euclidean domains. J. Topol. Anal. 7 (2015) 505–511. [Google Scholar]
- A. Vitolo, H1,p–eigenvalues and L∞–estimates in quasicylindrical domains. Commun. Pure Appl. Anal. 10 (2011) 1315–1329. [Google Scholar]
- F. Bozzola, L. Brasco, The role of topology and capacity in some bounds for principal frequencies, J. Geom. Anal., 34 (2024), Paper No. 299, 46 pp [Google Scholar]
- L. Brasco, F. Prinari, A. Zagati, Sobolev embeddings and distance functions, Adv. Calc. Var., 17 (2024), 1365–1398. [Google Scholar]
- M. Flucher, Variational problems with concentration. Progr. Nonlinear Differential Equations Appl., 36. Birkhäuser Verlag, Basel, (1999). [Google Scholar]
- V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, 2nd, revised and augmented edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 342. Springer, Heidelberg (2011). [Google Scholar]
- M. Sh. Birman and M.Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space. Translated from the 1980 Russian original by S. Khrushchev and V. Peller. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987). [Google Scholar]
- V. Maz’ya and M. Shubin, Can one see the fundamental frequency of a drum? Lett. Math. Phys. 74 (2005) 135–151. [Google Scholar]
- G.P. Leonardi, An overview on the Cheeger problem, in New Trends in Shape Optimization. Internatonal Series on Numerical Mathematics, Vol. 166. Birkhäuser/Springer, Cham (2015) 117–139. [Google Scholar]
- E. Parini, An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–22. [Google Scholar]
- L. Brasco and B. Ruffini, Compact Sobolev embeddings and torsion functions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34 (2017) 817–843. [MathSciNet] [Google Scholar]
- M. van den Berg and D. Bucur, On the torsion function with Robin or Dirichlet boundary conditions. J. Funct. Anal. 266 (2014) 1647–1666. [Google Scholar]
- H. Bueno and G. Ercole, Solutions of the Cheeger problem via torsion functions. J. Math. Anal. Appl. 381 (2011) 263–279. [Google Scholar]
- T. Giorgi and R.G. Smits, Principal Eigenvalue Estimates via the Supremum of Torsion. Indiana Univ. Math. J. 59 (2010) 987–1011. [CrossRef] [MathSciNet] [Google Scholar]
- F. Della Pietra, N. Gavitone and S. Guarino Lo Bianco, On functionals involving the torsional rigidity related to some classes of nonlinear operators. J. Differ. Equ. 265 (2018) 6424–6442. [Google Scholar]
- L. Brasco, F. Prinari and A. Zagati, A comparison principle for the Lane–Emden equation and applications to geometric estimates. Nonlinear Anal. 220 (2022) Paper No. 112847, 41 pp. [Google Scholar]
- R. Bañuelos and T. Carroll, Brownian motion and the fundamental frequency of a drum. Duke Math. J. 75 (1994) 575–602. [Google Scholar]
- V. Maz’ya, Sobolev spaces. Translated from the Russian by T.O. Shaposhnikova. Springer Ser. Soviet Math. Springer-Verlag, Berlin (1985). [Google Scholar]
- A.-K. Gallagher, On the Poincaré inequality on open sets in ℝn. Comput. Methods Funct. Theory, in press doi: 10.1007/s40315-024-00550-7 [Google Scholar]
- A.-K. Gallagher, Equivalence between validity of the p-Poincaré inequality and finiteness of the strict p-capacitary inradius. preprint (2024), available at https://arxiv.org/abs/2404.19207v2 [Google Scholar]
- V.N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable. Russian Math. Surveys 49 (1994) 1–79. [Google Scholar]
- G. Pólya, G. Szegő, Isoperimetric Inequalities in Mathematical Physics. Ann. of Math. Stud., 27. Princeton University Press, Princeton, NJ, (1951). [Google Scholar]
- G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988) 1203–1219. [Google Scholar]
- L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). [Google Scholar]
- P. Lindqvist, On the equation div(|∇u|p−2 ∇u) + λ |u|p−2 u = 0. Proc. Am. Math. Soc. 109 (1990) 157–164. [Google Scholar]
- L. Brasco, On principal frequencies and inradius in convex sets, in Bruno Pini Mathematical Analysis Seminar 2018. Bruno Pini Math. Anal. Semin., Vol. 9. Università di Bologna, Alma Mater Studiorum, Bologna (2018) 78–101. [Google Scholar]
- L. Brasco and R. Magnanini, The heart of a convex body, in it Geometric Properties for Parabolic and Elliptic PDE’s. Springer INdAM Ser., Vol. 2. Springer, Milan (2013) 49–66. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.