Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 27
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2025014
Published online 24 March 2025
  1. S. Esterhazy and J.M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems. Springer (2011) 285–324. [Google Scholar]
  2. M. Hauck and D. Peterseim, Multi-resolution localized orthogonal decomposition for Helmholtz problems. Multiscale Model. Simul. 20 (2022) 657–684. [MathSciNet] [Google Scholar]
  3. R.A. Bartlett, M. Heinkenschloss, D. Ridzal and B.G. van Bloemen Waanders, Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems. Comput. Methods Appl. Mech. Eng. 195 (2006) 6428–6447. [Google Scholar]
  4. J.E. Lagnese and G. Leugering, Domain in Decomposition Methods in Optimal Control of Partial Differential Equations. Vol. 148. Springer Science & Business Media (2004). [Google Scholar]
  5. T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin and K.H. Johansson, A survey of distributed optimization. Annu. Rev. Control 47 (2019) 278–305. [MathSciNet] [Google Scholar]
  6. S. Na, S. Shin, M. Anitescu and V.M. Zavala, On the convergence of overlapping Schwarz decomposition for nonlinear optimal control. IEEE Trans. Automatic Control 67 (2022) 5996–6011. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Shin, T. Faulwasser, M. Zanon and V.M. Zavala, A parallel decomposition scheme for solving long-horizon optimal control problems, in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE (2019) 5264–5271. [Google Scholar]
  8. M. Sperl, L. Saluzzi, L. Grüne and D. Kalise, Separable approximations of optimal value functions under a decaying sensitivity assumption, in Proceedings of the 62nd IEEE Conference on Decision and Control (CDC) (2023) 259–264. [Google Scholar]
  9. T. Faulwasser and L. Grüne, Turnpike properties in optimal control: an overview of discrete-time and continuous-time results. Handb. Numer. Anal. 23 (2022) 367–400. [Google Scholar]
  10. T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control Optim. 52 (2014) 1935–1957. [Google Scholar]
  11. T. Faulwasser, K. Flaßkamp, S. Ober-Blöbaum, M. Schaller and K. Worthmann, Manifold turnpikes, trims, and symmetries. Math. Control Signals Syst. 34 (2022) 759–788. [Google Scholar]
  12. M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1d wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst. Control Lett. 90 (2016) 61–70. [CrossRef] [Google Scholar]
  13. E. Trélat and E. Zuazua, The turnpike property in finite-dimensional nonlinear optimal control. J. Differ. Equ. 258 (2015) 81–114. [CrossRef] [Google Scholar]
  14. R. Guglielmi and Z. Li, Necessary conditions for turnpike property for generalized linear–quadratic problems. Math. Control Signals Syst. 31 (2024) 135–263. [Google Scholar]
  15. C. Esteve, B. Geshkovski, D. Pighin and E. Zuazua, Large-time asymptotics in deep learning. Preprint [arXiv:2008.02491] (2020). [Google Scholar]
  16. T. Faulwasser, A.-J. Hempel and S. Streif, On the turnpike to design of deep neural networks: explicit depth bounds. IFAC J. Syst. Control 30 (2024) 100290. [CrossRef] [Google Scholar]
  17. B. Geshkovski and E. Zuazua, Turnpike in optimal control of PDEs, ResNets, and beyond. Acta Numerica 31 (2022) 135–263. [Google Scholar]
  18. T. Faulwasser and A. Murray, Turnpike properties in discrete-time mixed-integer optimal control. IEEE Control Syst. Lett. 4 (2020) 704–709. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Grüne, Economic receding horizon control without terminal constraints. Automatica, 49 (2013) 725–734. [Google Scholar]
  20. L. Grüne, Approximation properties of receding horizon optimal control. Jahresbericht Deutschen Mathematiker-Vereinigung, 118 (2016) 3–37. [Google Scholar]
  21. L. Grüne, M. Schaller and A. Schiela, Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs. ESAIM: Control Optim. Calc. Var. 27 (2021) 56. [Google Scholar]
  22. L. Grüne, M. Schaller and A. Schiela, Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control. SIAM J. Control Optim. 57 (2019) 2753–2774. [Google Scholar]
  23. L. Grüne, M. Schaller and A. Schiela, Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. J. Differ. Equ. 268 (2020) 7311–7341. [CrossRef] [Google Scholar]
  24. L. Grüne, M. Schaller and A. Schiela, Efficient model predictive control for parabolic PDEs with goal oriented error estimation. SIAM J. Sci. Comput. 44 (2022) A471–A500. [Google Scholar]
  25. S. Shin and V.M. Zavala, Diffusing-horizon model predictive control. IEEE Trans. Automatic Control 68 (2021) 188–201. [Google Scholar]
  26. S. Shin, M. Anitescu and V.M. Zavala, Exponential decay of sensitivity in graph-structured nonlinear programs. SIAM J. Optim. 32 (2022) 1156–1183. [Google Scholar]
  27. S. Shin, Graph-Structured Nonlinear Programming: Properties and Algorithms. PhD thesis, The University of Wisconsin-Madison (2021). [Google Scholar]
  28. S. Shin, Y. Lin, G. Qu, A. Wierman and M. Anitescu, Near-optimal distributed linear-quadratic regulator for networked systems. SIAM J. Control Optim. 61 (2023) 1113–1135. [Google Scholar]
  29. I. Stakgold and M.J. Holst, Green’s Functions and Boundary Value Problems. John Wiley & Sons (2011). [Google Scholar]
  30. A. Schiela, A concise proof for existence and uniqueness of solutions of linear parabolic PDEs in the context of optimal control. Syst. Control Lett. 62 (2013) 895–901. [Google Scholar]
  31. H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Vol. 2. Springer (2011). [Google Scholar]
  32. M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. IHRE Anwendungen 22 (2003) 751–756. [Google Scholar]
  33. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015). [Google Scholar]
  34. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 17 (2020) 261–272. [NASA ADS] [CrossRef] [Google Scholar]
  35. L.C. Evans, Partial Differential Equations, Vol. 19. American Mathematical Society (2022). [Google Scholar]
  36. J. Wloka, Partial Differential Equations. Cambridge University Press (1987). [Google Scholar]
  37. E. Zeidler, Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators. Springer Science & Business Media (2013). [Google Scholar]
  38. M. Schaller, Sensitivity Analysis and Goal Oriented Error Estimation for Model Predictive Control. PhD thesis, University of Bayreuth (2021). [Google Scholar]
  39. S. Göttlich, B. Oppeneiger, M. Schaller and K. Worthmann, Spatial exponential decay of perturbations in optimal control of general evolution equations, 2025. Preprint [arXiv:2501.12279]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.