Open Access
Issue |
ESAIM: COCV
Volume 31, 2025
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/cocv/2025018 | |
Published online | 24 March 2025 |
- N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 1087–1092. [CrossRef] [Google Scholar]
- N. Metropolis and S. Ulam, The Monte Carlo method. J. Amer. Statist. Assoc. 44 (1949) 335–341. [Google Scholar]
- S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680. [Google Scholar]
- J.H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975). [Google Scholar]
- L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT’2010. Physica-Verlag/Springer, Heidelberg (2010) 177–186. [Google Scholar]
- L. Bottou, F.E. Curtis and J. Nocedal, Optimization methods for large-scale machine learning. SIAM Rev. 60 (2018) 223–311. [CrossRef] [MathSciNet] [Google Scholar]
- X. Qian and D. Klabjan, The impact of the mini-batch size on the variance of gradients in stochastic gradient descent. arXiv preprint arXiv:2004.13146 (2020). [Google Scholar]
- S. Jin, L. Li and J.-G. Liu, Random batch methods (RBM) for interacting particle systems. J. Comput. Phys. 400 (2020) 108877, 30. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jin, L. Li and J.-G. Liu, Convergence of the random batch method for interacting particles with disparate species and weights. SIAM J. Numer. Anal. 59 (2021) 746–768. [CrossRef] [MathSciNet] [Google Scholar]
- D. Ko, S.-Y. Ha, S. Jin and D. Kim, Uniform error estimates for the random batch method to the first-order consensus models with antisymmetric interaction kernels. Stud. Appl. Math. 146 (2021) 983–1022. [Google Scholar]
- D. Ko and E. Zuazua, Model predictive control with random batch methods for a guiding problem. Math. Models Methods Appl. Sci. 31 (2021) 1569–1592. [Google Scholar]
- D.W.M. Veldman, A. Borkowski and E. Zuazua, Stability and convergence of a randomized model predictive control strategy. IEEE Trans. Automatic Control 69 (2024) 6253–6260. [CrossRef] [MathSciNet] [Google Scholar]
- D.W.M. Veldman and E. Zuazua, A framework for randomized time-splitting in linear-quadratic optimal control. Numer. Math. 151 (2022) 495–549. [Google Scholar]
- J. Latz, Analysis of stochastic gradient descent in continuous time. Stat. Comput. 31 (2021) Paper No. 39, 25. [Google Scholar]
- J. Latz, Gradient flows and randomised thresholding: sparse inversion and classification. Inverse Probl. 38 (2022) Paper No. 124006, 31. [Google Scholar]
- M. Eisenmann and T. Stillfjord, A randomized operator splitting scheme inspired by stochastic optimization methods. Numer. Math. 156 (2024) 435–461. [Google Scholar]
- H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces. Vol. 17 of MOS-SIAM Series on Optimization, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA (2014). [Google Scholar]
- V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010). [Google Scholar]
- A. Chirilă, M. Marin and A. Öchsner, Distribution Theory Applied to Differential Equations. Springer, Cham (2021). [Google Scholar]
- A. Petrosyan and H. Shahgholian, Parabolic obstacle problems applied to finance, in Recent developments in nonlinear partial differential equations. Vol. 439 of Contemporary Mathematics. American Mathematics Society, Providence, RI (2007) 117–133. [Google Scholar]
- A. Blanchet, J. Dolbeault and R. Monneau, On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients. J. Math. Pures Appl. 85 (2006) 371–414. [Google Scholar]
- A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary. J. Funct. Anal. 18 (1975) 151–176. [Google Scholar]
- D. R. Adams and S. Lenhart, Optimal control of the obstacle for a parabolic variational inequality. J. Math. Anal. Appl. 268 (2002) 602–614. [Google Scholar]
- M. Hintermüller and I. Kopacka, A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50 (2011) 111–145. [Google Scholar]
- H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd edn. Springer, Cham (2017). [Google Scholar]
- R.S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12 (2005) 279–290. [Google Scholar]
- S.L. Smith, B. Dherin, D. Barrett and S. De, On the origin of implicit regularization in stochastic gradient Descent, in International Conference on Learning Representations (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.