Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 29
Number of page(s) 30
DOI https://doi.org/10.1051/cocv/2025019
Published online 31 March 2025
  1. D. Armbruster, D.E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo, A continuum model for a re-entrant factory. Oper. Res. 54 (2006) 933–950. [CrossRef] [Google Scholar]
  2. G.S. Fishman, Discrete-event Simulation: Modeling, Programming, and Analysis. Springer Science & Business Media (2013). [Google Scholar]
  3. J.D.C. Little, A proof for the queuing formula: L= λ w. Oper. Res. 9 (1961) 383–387. [Google Scholar]
  4. J.-M. Coron, Control and nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  5. T. Li, Controllability and observability for quasilinear hyperbolic systems. Vol. 3 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2010). [Google Scholar]
  6. J.-M. Coron, O. Glass and Z. Wang, Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed. SIAM J. Control Optim. 48 (2009/2010) 3105–3122. [Google Scholar]
  7. M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1–11. [MathSciNet] [Google Scholar]
  8. T. Li and B. Rao, Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim. 41 (2003) 1748–1755. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Ancona and A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998) 290–312. [Google Scholar]
  10. O. Glass, On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc. 9 (2007) 427–486. [Google Scholar]
  11. F. Ancona and A. Marson, Asymptotic stabilization of systems of conservation laws by controls acting at a single boundary point, in Control methods in PDE-dynamical systems. Vol. 426 of Contemporary Mathematics. American Mathematics Society, Providence, RI (2007) 1–43. [Google Scholar]
  12. T. Li, Global classical solutions for quasilinear hyperbolic systems. Vol. 32 of RAM: Research in Applied Mathematics. Masson, Paris (1994). [Google Scholar]
  13. G. Bastin and J.-M. Coron, Stability and boundary stabilization of 1-D hyperboliC systems. Vol. 88 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2016). [Google Scholar]
  14. J.-M. Coron, G. Bastin and B. d’Andréa Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498. [Google Scholar]
  15. A. Tchousso, T. Besson and C.-Z. Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method. ESAIM Control Optim. Calc. Var. 15 (2009) 403–425. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. J.-M. Coron, S. Ervedoza, S.S. Ghoshal, O. Glass and V. Perrollaz, Dissipative boundary conditions for 2 × 2 hyperbolic systems of conservation laws for entropy solutions in BV. J. Differ. Equ. 262 (2017) 1–30. [Google Scholar]
  17. J.-M. Coron, R. Vazquez, M. Krstic and G. Bastin, Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Hu, R. Vazquez, F. Di Meglio and M. Krstic, Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems. SIAM J. Control Optim. 57 (2019) 963–998. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Krstic and A. Smyshlyaev, Boundary control of PDEs. Vol. 16 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). [Google Scholar]
  20. J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1337–1359. [Google Scholar]
  21. M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems. IEEE Trans. Automat. Control 55 (2010) 2511–2526. [Google Scholar]
  22. Rinaldo M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var. 17 (2011) 353–379. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  23. M. Gröschel, A. Keimer, G. Leugering and Z. Wang, Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity. SIAM J. Control Optim. 52 (2014) 2141–2163. [Google Scholar]
  24. M. Gugat, A. Keimer, G. Leugering and Z. Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Netw. Heterog. Media 10 (2015) 749–785. [Google Scholar]
  25. X. Gong and M. Kawski, Weak measure-valued solutions of a nonlinear hyperbolic conservation law. SIAM J. Math. Anal. 53 (2021) 4417–4444. [MathSciNet] [Google Scholar]
  26. J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity. J. Differ. Equ. 252 (2012) 181–201. [Google Scholar]
  27. J.-M. Coron and Z. Wang, Output feedback stabilization for a scalar conservation law with a nonlocal velocity. SIAM J. Math. Anal. 45 (2013) 2646–2665. [MathSciNet] [Google Scholar]
  28. W. Chen, C. Liu and Z. Wang, Global feedback stabilization for a class of nonlocal transport equations: the continuous and discrete case. SIAM J. Control Optim. 55 (2017) 760–784. [Google Scholar]
  29. X. Xu, D. Ni, Y. Yuan and S. Dubljevic, Pi-control design of continuum models of production systems governed by scalar hyperbolic partial differential equation. IFAC-PapersOnLine 51 (2018) 584–589. [Google Scholar]
  30. M. Diagne and I. Karafyllis, Event-triggered boundary control of a continuum model of highly re-entrant manufacturing systems. Automatica J. IFAC 134 (2021) Paper No. 109902. [Google Scholar]
  31. J. Chu, P. Shang and Z. Wang, Controllability and stabilization of a conservation law modeling a highly re-entrant manufacturing system. Nonlinear Anal. 189 (2019) 111577. [Google Scholar]
  32. A. Bayen, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, Boundary controllability and asymptotic stabilization of a nonlocal traffic flow model. Vietnam J. Math. 49 (2021) 957–985. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.