Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 86
Number of page(s) 25
DOI https://doi.org/10.1051/cocv/2025071
Published online 08 October 2025
  1. J.-M. Coron, Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  2. V. Jurdjevic, Geometric control theory, vol. 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997). [Google Scholar]
  3. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). Control Theory and Optimization, II. [Google Scholar]
  4. A.A. Agrachev and A.V. Sarychev, Navier-Stokes equations: controllability by means of low modes forcing. J. Math. Fluid Meeh. 7 (2005) 108-152. [Google Scholar]
  5. A.S. Fokas and B. Fuchssteiner, Backlund transformations for hereditary symmetries. Nonlinear Anal. 5 (1981) 423-432. [Google Scholar]
  6. R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993) 1661-1664. [PubMed] [Google Scholar]
  7. A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51 (1998) 475-504. [Google Scholar]
  8. A. Alexandrou Himonas and G. Misiolek, The Cauchy problem for an integrable shallow-water equation. Differ. Integral Equ. 14 (2001) 821-831. [Google Scholar]
  9. R. Danchin, A few remarks on the Camassa-Holm equation. Differ. Integral Equ. 14 (2001) 953-988. [Google Scholar]
  10. A. Alexandrou Himonas and C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation. Adv. Differ. Equ. 19 (2014) 161-200. [Google Scholar]
  11. G. Misiolek, Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12 (2002) 1080-1104. [Google Scholar]
  12. A. Constantin, On the blow-up of solutions of a periodic shallow water equation. J. Nonlinear Sei. 10 (2000) 391-399. [Google Scholar]
  13. Z. Yin, On the blow-up of solutions of a periodic nonlinear dispersive wave equation in compressible elastic rods. J. Math. Anal. Appl. 288 (2003) 232-245. [Google Scholar]
  14. O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation. J. Differ. Equ. 245 (2008) 1584-1615. [Google Scholar]
  15. S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677-1696. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Mitra, Local null controllability of viscous Camassa-Holm equation. J. Evol. Equ. 18 (2018) 627-657. [Google Scholar]
  17. H.R. Dullin, G.A. Gottwald and D.D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Japan Society of Fluid Mechanics. In memoriam Prof. Philip Gerald Drazin 1934-2002. Fluid Dyn. Res. An International Journal 33 (2003) 73-95. [Google Scholar]
  18. V. Perrollaz, Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval. J. Funct. Anal. 259 (2010) 2333-2365. [Google Scholar]
  19. V. Barbu, Stabilization of Navier-Stokes Flows. Communications and Control Engineering Series. Springer, London (2011). [Google Scholar]
  20. V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443-1494. [CrossRef] [MathSciNet] [Google Scholar]
  21. W. Liu, Elementary feedback stabilization of the linear reaction-convection-diffusion equation and the wave equation, vol. 66 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2010). [Google Scholar]
  22. J.-P. Raymond, Stabilizability of infinite dimensional systems by finite dimensional control. Comput. Methods Appl. Math. 19 (2019) 267-282. [Google Scholar]
  23. J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159-1187. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Triggiani, On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52 (1975) 383-403. [Google Scholar]
  25. S. Lai and Y. Wu, Global solutions and blow-up phenomena to a shallow water equation. J. Differ. Equ. 249 (2010) 693-706. [Google Scholar]
  26. V. Jurdjevic and I. Kupka, Polynomial control systems. Math. Ann. 272 (1985) 361-368. [Google Scholar]
  27. A.A. Agrachev and A.V. Sarychev, Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing. Commun. Math. Phys. 265 (2006) 673-697. [Google Scholar]
  28. A. Shirikyan, Approximate controllability of three-dimensional Navier-Stokes equations. Commun. Math. Phys. 266 (2006) 123-151. [Google Scholar]
  29. A. Shirikyan, Contrôlabilité exacte en projections pour les équations de Navier-Stokes tridimensionnelles. Ann. Inst. H. Poincaré C Anal. Non Linéaire 24 (2007) 521-537. [Google Scholar]
  30. H. Nersisyan, Controllability of the 3D compressible Euler system. Commun. Part. Differ. Equ. 36 (2011) 1544-1564. [Google Scholar]
  31. H. Nersisyan, Controllability of 3D incompressible Euler equations by a finite-dimensional external force. ESAIM Control Optim. Cale. Var. 16 (2010) 677-694. [Google Scholar]
  32. A. Shirikyan, Approximate controllability of the viscous Burgers equation on the real line, in Geometric Control Theory and Sub-Riemannian Geometry, vol. 5 of Springer INdAM Ser. Springer, Cham (2014) 351-370. [Google Scholar]
  33. A. Shirikyan, Control theory for the Burgers equation: Agrachev-Sarychev approach. Pure Appl. Funct. Anal. 3 (2018) 219-240. [Google Scholar]
  34. A. Sarychev, Controllability of the cubic Schroedinger equation via a low-dimensional source term. Math. Control Relat. Fields 2 (2012) 247-270. [Google Scholar]
  35. J.-M. Coron, S. Xiang and P. Zhang, On the global approximate controllability in small time of semiclassical 1-D Schrödinger equations between two states with positive quantum densities. J. Differ. Equ. 345 (2023) 1-44. [Google Scholar]
  36. V. Nersesyan, Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Math. Control Relat. Fields 11 (2021) 237-251. [Google Scholar]
  37. N.E. Glatt-Holtz, D.P. Herzog and J.C. Mattingly, Scaling and saturation in infinite-dimensional control problems with applications to stochastic partial differential equations. Ann. PDE 4 (2018) Paper No. 16, 103. [Google Scholar]
  38. M. Chen, Global approximate controllability of the Korteweg-de Vries equation by a finite-dimensional force. Appl. Math. Optim. 87 (2023) Paper No. 12, 22. [Google Scholar]
  39. M. Jellouli, On the controllability of the BBM equation. Math. Control Relat. Fields 13 (2023) 415-430. [Google Scholar]
  40. P. Gao, Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise. ESAIM Control Optim. Calc. Var. 28 (2022) Paper No. 20, 22. [Google Scholar]
  41. A.A. Agrachev, Some open problems, in Geometric Control Theory and Sub-Riemannian Geometry, Vol. 5 of Springer INdAM Ser. Springer, Cham (2014) 1-13. [Google Scholar]
  42. V. Nersesyan and M. Rissel, Localized and degenerate controls for the incompressible Navier-Stokes system. Comm. Pure Appl. Math. 78 (2025) 1285-1319. [Google Scholar]
  43. V. Nersesyan and M. Rissel, Global controllability of boussinesq flows by using only a temperature control. Arch. Ration. Meeh. Anal. 249 (2025) 58. [Google Scholar]
  44. A. Alexandrou Himonas and G. Misiolek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys. 296 (2010) 285-301. [Google Scholar]
  45. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41 (1988) 891-907. [Google Scholar]
  46. M. Taylor, Commutator estimates. Proc. Amer. Math. Soc. 131 (2023) 1501-1507. [Google Scholar]
  47. J. Bedrossian and V. Vicol, The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations— An Introduction, vol. 225 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.