Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Localized inverse design in conservation laws and Hamilton-Jacobi equations

Rinaldo M. Colombo and Vincent Perrollaz
Zeitschrift für angewandte Mathematik und Physik 76 (2) (2025)
https://doi.org/10.1007/s00033-025-02458-1

A Kalman condition for the controllability of a coupled system of Stokes equations

Takéo Takahashi, Luz de Teresa and Yingying Wu-Zhang
Journal of Evolution Equations 24 (1) (2024)
https://doi.org/10.1007/s00028-023-00935-6

Insensitizing controls for the micropolar fluids

Qiang Tao, Zheng‐an Yao and Xuan Yin
Mathematical Methods in the Applied Sciences 47 (17) 13437 (2024)
https://doi.org/10.1002/mma.10200

Stackelberg exact controllability for the Boussinesq system

Takéo Takahashi, Luz de Teresa and Yingying Wu-Zhang
Nonlinear Differential Equations and Applications NoDEA 31 (5) (2024)
https://doi.org/10.1007/s00030-024-00971-2

Existence of Controls Insensitizing the Rotational of the Solution of the Navier–Stokes System Having a Vanishing Component

N. Carreño and J. Prada
Applied Mathematics & Optimization 88 (2) (2023)
https://doi.org/10.1007/s00245-023-10011-7

Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs

Siddhartha Mishra and Roberto Molinaro
IMA Journal of Numerical Analysis 42 (2) 981 (2022)
https://doi.org/10.1093/imanum/drab032

Local null controllability of the penalized Boussinesq system with a reduced number of controls

Jon Asier Bárcena-Petisco and Kévin Le Balc'h
Mathematical Control and Related Fields 12 (3) 641 (2022)
https://doi.org/10.3934/mcrf.2021038

Global Controllability of the Navier–Stokes Equations in the Presence of Curved Boundary with No-Slip Conditions

Jiajiang Liao, Franck Sueur and Ping Zhang
Journal of Mathematical Fluid Mechanics 24 (3) (2022)
https://doi.org/10.1007/s00021-022-00689-0

Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains

André da Rocha Lopes and Juan Límaco
Evolution Equations and Control Theory 11 (3) 749 (2022)
https://doi.org/10.3934/eect.2021024

Theoretical and numerical local null controllability of a quasi-linear parabolic equation in dimensions 2 and 3

E. Fernández-Cara, J. Límaco and I. Marín-Gayte
Journal of the Franklin Institute 358 (5) 2846 (2021)
https://doi.org/10.1016/j.jfranklin.2021.01.031

Switching Controls for Analytic Semigroups and Applications to Parabolic Systems

Felipe Wallison Chaves-Silva, Sylvain Ervedoza and Diego A. Souza
SIAM Journal on Control and Optimization 59 (4) 2820 (2021)
https://doi.org/10.1137/20M1356920

Inverse Problems and Related Topics

Oleg Yu. Imanuvilov and Masahiro Yamamoto
Springer Proceedings in Mathematics & Statistics, Inverse Problems and Related Topics 310 101 (2020)
https://doi.org/10.1007/978-981-15-1592-7_6

Approximate controllability of the FitzHugh-Nagumo equation in one dimension

Shirshendu Chowdhury, Mrinmay Biswas and Rajib Dutta
Journal of Differential Equations 268 (7) 3497 (2020)
https://doi.org/10.1016/j.jde.2019.10.001

Local null controllability for a parabolic-elliptic system with local and nonlocal nonlinearities

Laurent Prouvée and Juan Límaco
Electronic Journal of Qualitative Theory of Differential Equations (74) 1 (2019)
https://doi.org/10.14232/ejqtde.2019.1.74

Controllability of the Navier–Stokes Equation in a Rectangle with a Little Help of a Distributed Phantom Force

Jean-Michel Coron, Frédéric Marbach, Franck Sueur and Ping Zhang
Annals of PDE 5 (2) (2019)
https://doi.org/10.1007/s40818-019-0073-4

Local Exact Controllability of Two-Phase Field Solidification Systems with Few Controls

F. D. Araruna, B. M. R. Calsavara and E. Fernández-Cara
Applied Mathematics & Optimization 78 (2) 267 (2018)
https://doi.org/10.1007/s00245-017-9406-4

Local boundary controllability to trajectories for the 1d compressible Navier Stokes equations

Sylvain Ervedoza and Marc Savel
ESAIM: Control, Optimisation and Calculus of Variations 24 (1) 211 (2018)
https://doi.org/10.1051/cocv/2017008

Stackelberg–Nash null controllability for some linear and semilinear degenerate parabolic equations

F. D. Araruna, B. S. V. Araújo and E. Fernández-Cara
Mathematics of Control, Signals, and Systems 30 (3) (2018)
https://doi.org/10.1007/s00498-018-0220-6

The sub-Cauchy–Stokes problem: Solvability issues and Lagrange multiplier methods with artificial boundary conditions

Elyes Ahmed and Amel Ben Abda
Journal of Computational and Applied Mathematics 338 258 (2018)
https://doi.org/10.1016/j.cam.2018.01.034

On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations

Enrique Fernández-Cara, Arnaud Münch and Diego A. Souza
Journal of Scientific Computing 70 (2) 819 (2017)
https://doi.org/10.1007/s10915-016-0266-x

Remarks concerning the approximate controllability of the 3D Navier–Stokes and Boussinesq systems

Enrique Fernández-Cara, Ivaldo T. De Sousa and Franciane B. Viera
SeMA Journal 74 (3) 237 (2017)
https://doi.org/10.1007/s40324-017-0111-7

Local exact controllability for the two- and three-dimensional compressible Navier–Stokes equations

Sylvain Ervedoza, Olivier Glass and Sergio Guerrero
Communications in Partial Differential Equations 41 (11) 1660 (2016)
https://doi.org/10.1080/03605302.2016.1214597

Local controllability to trajectories for non-homogeneous incompressible Navier–Stokes equations

Mehdi Badra, Sylvain Ervedoza and Sergio Guerrero
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 33 (2) 529 (2016)
https://doi.org/10.1016/j.anihpc.2014.11.006

Spectral inequality and optimal cost of controllability for the Stokes system

Felipe W. Chaves-Silva and Gilles Lebeau
ESAIM: Control, Optimisation and Calculus of Variations 22 (4) 1137 (2016)
https://doi.org/10.1051/cocv/2016034

Boundary observability inequalities for the 3D Oseen–Stokes system and applications

Sérgio S. Rodrigues
ESAIM: Control, Optimisation and Calculus of Variations 21 (3) 723 (2015)
https://doi.org/10.1051/cocv/2014045

SemiGlobal Exact Controllability of Nonlinear Plates

Matthias Eller and Daniel Toundykov
SIAM Journal on Control and Optimization 53 (4) 2480 (2015)
https://doi.org/10.1137/130939705

Stackelberg–Nash exact controllability for linear and semilinear parabolic equations

F.D. Araruna, E. Fernández-Cara and M.C. Santos
ESAIM: Control, Optimisation and Calculus of Variations 21 (3) 835 (2015)
https://doi.org/10.1051/cocv/2014052

Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system

N. Carreño, S. Guerrero and M. Gueye
ESAIM: Control, Optimisation and Calculus of Variations 21 (1) 73 (2015)
https://doi.org/10.1051/cocv/2014020

Null controllability of the linearized compressible Navier–Stokes equations using moment method

Shirshendu Chowdhury and Debanjana Mitra
Journal of Evolution Equations 15 (2) 331 (2015)
https://doi.org/10.1007/s00028-014-0263-1

Approximate controllability for linearized compressible barotropic Navier–Stokes system in one and two dimensions

Shirshendu Chowdhury
Journal of Mathematical Analysis and Applications 422 (2) 1034 (2015)
https://doi.org/10.1016/j.jmaa.2014.09.011

Uniform local null control of the Leray-αmodel

Fágner D. Araruna, Enrique Fernández-Cara and Diego A. Souza
ESAIM: Control, Optimisation and Calculus of Variations 20 (4) 1181 (2014)
https://doi.org/10.1051/cocv/2014011

On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems

Mehdi Badra and Takéo Takahashi
ESAIM: Control, Optimisation and Calculus of Variations 20 (3) 924 (2014)
https://doi.org/10.1051/cocv/2014002

Exact Controllability of Galerkin's Approximations for the Oldroyd Fluid System

A. O. Marinho, A. T. Lourêdo and M. Milla Miranda
International Journal of Modeling and Optimization 4 (2) 126 (2014)
https://doi.org/10.7763/IJMO.2014.V4.359

Local exact controllability for the 1-d compressible Navier-Stokes equations

Sylvain Ervedoza
Séminaire Laurent Schwartz — EDP et applications 1 (2014)
https://doi.org/10.5802/slsedp.30

Single input controllability of a simplified fluid-structure interaction model

Yuning Liu, Takéo Takahashi and Marius Tucsnak
ESAIM: Control, Optimisation and Calculus of Variations 19 (1) 20 (2013)
https://doi.org/10.1051/cocv/2011196

Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities

H.R. Clark, E. Fernández-Cara, J. Limaco and L.A. Medeiros
Applied Mathematics and Computation 223 483 (2013)
https://doi.org/10.1016/j.amc.2013.08.035

Local Null Controllability of the N-Dimensional Navier–Stokes System with N − 1 Scalar Controls in an Arbitrary Control Domain

N. Carreño and S. Guerrero
Journal of Mathematical Fluid Mechanics 15 (1) 139 (2013)
https://doi.org/10.1007/s00021-012-0093-2

Inverse source problem for linearized Navier–Stokes equations with data in arbitrary sub-domain

Mourad Choulli, Oleg Yu. Imanuvilov, Jean-Pierre Puel and Masahiro Yamamoto
Applicable Analysis 92 (10) 2127 (2013)
https://doi.org/10.1080/00036811.2012.718334

Motivation, analysis and control of the variable density Navier-Stokes equations

Enrique Fernández-Cara
Discrete & Continuous Dynamical Systems - S 5 (6) 1021 (2012)
https://doi.org/10.3934/dcdss.2012.5.1021

On the control of some coupled systems of the Boussinesq kind with few controls

Diego A. Souza and Enrique Fernández-Cara
Mathematical Control and Related Fields 2 (2) 121 (2012)
https://doi.org/10.3934/mcrf.2012.2.121

A result concerning the global approximate controllability of the Navier–Stokes system in dimension 3

Sergio Guerrero, O.Yu. Imanuvilov and J.-P. Puel
Journal de Mathématiques Pures et Appliquées 98 (6) 689 (2012)
https://doi.org/10.1016/j.matpur.2012.05.008

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau and Gilles Lebeau
ESAIM: Control, Optimisation and Calculus of Variations 18 (3) 712 (2012)
https://doi.org/10.1051/cocv/2011168

Local Exact Controllability for the One-Dimensional Compressible Navier–Stokes Equation

Sylvain Ervedoza, Olivier Glass, Sergio Guerrero and Jean-Pierre Puel
Archive for Rational Mechanics and Analysis 206 (1) 189 (2012)
https://doi.org/10.1007/s00205-012-0534-3

Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain

Nicolás Carreño
Mathematical Control & Related Fields 2 (4) 361 (2012)
https://doi.org/10.3934/mcrf.2012.2.361

Boundary stabilization of vibration of nonlocal micropolar elastic media

Ali Najafi, Mohammad Eghtesad and Farhang Daneshmand
Applied Mathematical Modelling 36 (8) 3447 (2012)
https://doi.org/10.1016/j.apm.2011.09.091

Feedback Stabilization of Magnetohydrodynamic Equations

Cătălin-George Lefter
SIAM Journal on Control and Optimization 49 (3) 963 (2011)
https://doi.org/10.1137/070697124

Internal Exponential Stabilization to a Nonstationary Solution for 3D Navier–Stokes Equations

Viorel Barbu, Sérgio S. Rodrigues and Armen Shirikyan
SIAM Journal on Control and Optimization 49 (4) 1454 (2011)
https://doi.org/10.1137/100785739

Stabilization of Parabolic Nonlinear Systems with Finite Dimensional Feedback or Dynamical Controllers: Application to the Navier–Stokes System

Mehdi Badra and Takéo Takahashi
SIAM Journal on Control and Optimization 49 (2) 420 (2011)
https://doi.org/10.1137/090778146

On a Unique Continuation Property Related to the Boundary Stabilization of Magnetohydrodynamic Equations

Cătălin-George Lefter
Annals of the Alexandru Ioan Cuza University - Mathematics 56 (1) 1 (2010)
https://doi.org/10.2478/v10157-010-0001-0

Applied and Numerical Partial Differential Equations

Enrique Fernández-Cara
Computational Methods in Applied Sciences, Applied and Numerical Partial Differential Equations 15 81 (2010)
https://doi.org/10.1007/978-90-481-3239-3_7

Local Exact Controllability of the Navier–Stokes Equations with the Condition on the Pressure on Parts of the Boundary

Tujin Kim and Daomin Cao
SIAM Journal on Control and Optimization 48 (6) 3805 (2010)
https://doi.org/10.1137/060650143

Null controllability of the N-dimensional Stokes system withN−1scalar controls

Jean-Michel Coron and Sergio Guerrero
Journal of Differential Equations 246 (7) 2908 (2009)
https://doi.org/10.1016/j.jde.2008.10.019

A Nonstandard Approach to a Data Assimilation Problem and Tychonov Regularization Revisited

Jean-Pierre Puel
SIAM Journal on Control and Optimization 48 (2) 1089 (2009)
https://doi.org/10.1137/060670961

Exact controllability of Galerkin’s approximations of micropolar fluids

F. Araruna, F. Chaves-Silva and M. Rojas-Medar
Proceedings of the American Mathematical Society 138 (4) 1361 (2009)
https://doi.org/10.1090/S0002-9939-09-10154-5

Local null controllability of the two-dimensional Navier–Stokes system in the torus with a control force having a vanishing component

Jean-Michel Coron and Sergio Guerrero
Journal de Mathématiques Pures et Appliquées 92 (5) 528 (2009)
https://doi.org/10.1016/j.matpur.2009.05.015

On the global null controllability of a Navier–Stokes system with Navier slip boundary conditions

Marianne Chapouly
Journal of Differential Equations 247 (7) 2094 (2009)
https://doi.org/10.1016/j.jde.2009.06.022

Carleman Estimates for a Class of Degenerate Parabolic Operators

P. Cannarsa, P. Martinez and J. Vancostenoble
SIAM Journal on Control and Optimization 47 (1) 1 (2008)
https://doi.org/10.1137/04062062X

Local null controllability of a two-dimensional fluid-structure interaction problem

Muriel Boulakia and Axel Osses
ESAIM: Control, Optimisation and Calculus of Variations 14 (1) 1 (2008)
https://doi.org/10.1051/cocv:2007031

Optimal and Robust Control of Fluid Flows: Some Theoretical and Computational Aspects

T. Tachim Medjo, R. Temam and M. Ziane
Applied Mechanics Reviews 61 (1) (2008)
https://doi.org/10.1115/1.2830523

Exact controllability of nonlinear diffusion equations arising in reactor dynamics

K. Sakthivel, K. Balachandran and S.S. Sritharan
Nonlinear Analysis: Real World Applications 9 (5) 2029 (2008)
https://doi.org/10.1016/j.nonrwa.2007.06.013

Exact Internal Controllability for the Two-Dimensional Magnetohydrodynamic Equations

Teodor Havârneanu, Cătălin Popa and S. S. Sritharan
SIAM Journal on Control and Optimization 46 (5) 1802 (2007)
https://doi.org/10.1137/040611884

Controllability of systems of Stokes equations with one control force: existence of insensitizing controls

Sergio Guerrero
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 24 (6) 1029 (2007)
https://doi.org/10.1016/j.anihpc.2006.11.001

Global Carleman Inequalities for Parabolic Systems and Applications to Controllability

Enrique Fernández‐Cara and Sergio Guerrero
SIAM Journal on Control and Optimization 45 (4) 1395 (2006)
https://doi.org/10.1137/S0363012904439696

Two-dimensional local null controllability of a rigid structure in a Navier–Stokes fluid

Muriel Boulakia and Axel Osses
Comptes Rendus. Mathématique 343 (2) 105 (2006)
https://doi.org/10.1016/j.crma.2006.05.004

Some Controllability Results forthe N-Dimensional Navier--Stokes and Boussinesq systems with N-1 scalar controls

Enrique Fernández-Cara, Sergio Guerrero, Oleg Yu. Imanuvilov and Jean-Pierre Puel
SIAM Journal on Control and Optimization 45 (1) 146 (2006)
https://doi.org/10.1137/04061965X

Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions

Sergio Guerrero
ESAIM: Control, Optimisation and Calculus of Variations 12 (3) 484 (2006)
https://doi.org/10.1051/cocv:2006006

Exact internal controllability for the two-dimensional Navier–Stokes equations with the Navier slip boundary conditions

Teodor Havârneanu, Cătălin Popa and S.S. Sritharan
Systems & Control Letters 55 (12) 1022 (2006)
https://doi.org/10.1016/j.sysconle.2006.06.015

Controls Insensitizing the Observation of a Quasi-geostrophic Ocean Model

Enrique Fernández-Cara, Galina C. Garcia and Axel Osses
SIAM Journal on Control and Optimization 43 (5) 1616 (2005)
https://doi.org/10.1137/S0363012903433607

On the controllability of the N-dimensional Navier–Stokes and Boussinesq systems with N−1 scalar controls

Enrique Fernández-Cara, Sergio Guerrero, Oleg Yurievich Imanuvilov and Jean-Pierre Puel
Comptes Rendus. Mathématique 340 (4) 275 (2005)
https://doi.org/10.1016/j.crma.2004.12.013

Solving inverse problems involving the Navier–Stokes equations discretized by a Lagrange–Galerkin method

Gilles Fourestey and Marwan Moubachir
Computer Methods in Applied Mechanics and Engineering 194 (6-8) 877 (2005)
https://doi.org/10.1016/j.cma.2004.07.006

SOME CONTROL RESULTS FOR SIMPLIFIED ONE-DIMENSIONAL MODELS OF FLUID-SOLID INTERACTION

ANNA DOUBOVA and ENRIQUE FERNÁNDEZ-CARA
Mathematical Models and Methods in Applied Sciences 15 (05) 783 (2005)
https://doi.org/10.1142/S0218202505000522

Local exact controllability of the Navier–Stokes system

E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel
Journal de Mathématiques Pures et Appliquées 83 (12) 1501 (2004)
https://doi.org/10.1016/j.matpur.2004.02.010

Remarks on exact controllability for Stokes and Navier–Stokes systems

Enrique Fernández-Cara, Sergio Guerrero, Oleg Yurievich Imanuvilov and Jean-Pierre Puel
Comptes Rendus Mathematique 338 (5) 375 (2004)
https://doi.org/10.1016/j.crma.2003.12.016

Exact controllability for the magnetohydrodynamic equations

Viorel Barbu, Teodor Havârneanu, Cătălin Popa and S. S. Sritharan
Communications on Pure and Applied Mathematics 56 (6) 732 (2003)
https://doi.org/10.1002/cpa.10072