Issue |
ESAIM: COCV
Volume 1, 1996
|
|
---|---|---|
Page(s) | 191 - 206 | |
DOI | https://doi.org/10.1051/cocv:1996105 | |
Published online | 15 August 2002 |
A Separation Theorem for Expected Value and Feared Value Discrete Time Control
We show how the use of a parallel between the ordinary (+, X) and the (max, +) algebras, Maslov measures that exploit this parallel, and more specifically their specialization to probabilities and the corresponding cost measures of Quadrat, offer a completely parallel treatment of stochastic and minimax control of disturbed nonlinear discrete time systems with partial information. This paper is based upon, and improves, the discrete time part of the earlier paper [9].
Résumé
Nous montrons comment l'utilisation d'un parallèle entre l'algèbre "classique" (+, X) et l'algèbre (max, +), des mesures de Maslov qui exploitent ce parallèle, et plus particulièrement leur spécialisation aux mesures de coût de Quadrat, permet un traitement entièrement parallèle de la commande stochastique ou minimax en feedback de sortie d'un système à temps discret perturbé. Cet article améliore une communication au symposium de l'International Society of Dynamic Games, Saint Jovite, 1994, publié sous la référence [9] ci-dessous.
Key words: Dynamical systems / minimax control / max-plus algebra / dynamical games.
© EDP Sciences, SMAI, 1996
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.