Issue |
ESAIM: COCV
Volume 9, February 2003
|
|
---|---|---|
Page(s) | 621 - 635 | |
DOI | https://doi.org/10.1051/cocv:2003030 | |
Published online | 15 September 2003 |
Remarques sur l'observabilité pour l'équation de Laplace
17 rue Léonard Mafrand, 92320 Châtillon, France;
phung@cmla.ens-cachan.fr.
Received:
14
January
2002
Revised:
28
May
2002
We consider the Laplace equation in a smooth bounded domain. We prove logarithmic estimates, in the sense of John [5] of solutions on a part of the boundary or of the domain without known boundary conditions. These results are established by employing Carleman estimates and techniques that we borrow from the works of Robbiano [8,11]. Also, we establish an estimate on the cost of an approximate control for an elliptic model equation.
Résumé
Nous quantifions la propriété de continuation unique pour le laplacien dans un domaine borné quand la condition aux bords est a priori inconnue. Nous établissons une estimation de dépen-dance de type logarithmique suivant la terminologie de John [5]. Les outils utilisés reposent sur les inégalités de Carleman et les techniques des travaux de Robbiano [8,11]. Aussi, nous déterminons en application de l'inégalité d'observabilité obtenue un coût du contrôle approché pour un problème elliptique modèle.
Mathematics Subject Classification: 35B60 / 93B07 / 95B37
Key words: Laplace equation / observability / Carleman inequalities / approximate controllability.
© EDP Sciences, SMAI, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.