Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 55 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.1051/cocv/2023051 | |
Published online | 25 July 2023 |
Turnpike properties of optimal boundary control problems with random linear hyperbolic systems
1
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Mathematic, Lehrstuhl für Dynamics, Control, Machine Learning and Numerics (Alexander von Humboldt-Professur), Cauerstr. 11, 91058 Erlangen, Germany
2
Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
* Corresponding author: martin.gugat@fau.de
Received:
14
February
2022
Accepted:
25
June
2023
In many applications, in systems that are governed by linear hyperbolic partial differential equations some of the problem parameters are uncertain. If information about the probability distribution of the parametric uncertainty, distribution is available, the uncertain state of the system can be described using an intrinsic formulation through a polynomial chaos expansion. This allows to obtain solutions for optimal boundary control problems with random parameters. We show that similar to the deterministic case, a turnpike result holds in the sense that for large time horizons the optimal states for dynamic optimal control problems on a substantial part of the time interval approaches the optimal states for the corresponding uncertain static optimal control problem. We show turnpike results both for the full uncertain system as well as for a generalized polynomial chaos approximation.
Mathematics Subject Classification: 35Q49 / 93E20 / 49K45 / 49J20
Key words: Optimal control / turnpike phenomenon / random coefficients / generalized polynomial chaos expansion / uncertainty
© The authors. Published by EDP Sciences, SMAI 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.