Open Access
Issue |
ESAIM: COCV
Volume 29, 2023
|
|
---|---|---|
Article Number | 55 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.1051/cocv/2023051 | |
Published online | 25 July 2023 |
- I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. [Google Scholar]
- G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Vol. 88. Birkhäuser/Springer, Basel (2016). [CrossRef] [Google Scholar]
- G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Vol. 88 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2016). Subseries in Control. [CrossRef] [Google Scholar]
- M. Brokate, Necessary optimality conditions for the control of semilinear hyperbolic boundary value problems, in 1985 24th IEEE Conference on Decision and Control (1985), 622–625. [CrossRef] [Google Scholar]
- R.H. Cameron and W.T. Martin, The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann. Math. 48 (1947) 385–392. [CrossRef] [MathSciNet] [Google Scholar]
- J. Carrillo, L. Pareschi and M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty. Commun. Comput. Phys. 25 (2019) 508–531. [CrossRef] [MathSciNet] [Google Scholar]
- J. Carrillo and M. Zanella, Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties. Vietnam J. Math. 47 (2019) 931–954. [CrossRef] [MathSciNet] [Google Scholar]
- Q.-Y. Chen, D. Gottlieb and J.S. Hesthaven, Uncertainty analysis for the steady-state flows in a dual throat nozzle. J. Comput. Phys. 204 (2005) 378–398. [CrossRef] [MathSciNet] [Google Scholar]
- D. Dai, Y. Epshteyn and A. Narayan, Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations. J. Comput. Phys. (2021) 110901. [Google Scholar]
- B.J. Debusschere, H.N. Najm, P.P. Pébay, O.M. Knio, R.G. Ghanem and O.P.L. Maître, Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26 (2004) 698–719. [CrossRef] [MathSciNet] [Google Scholar]
- B. Després, G. Poëtte and D. Lucor, Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009) 2443–2467. [CrossRef] [MathSciNet] [Google Scholar]
- R. Dorfman, P.A. Samuelson and R.M. Solow, Linear Programming and Economic Analysis. McGraw-Hill Book Company, Inc. IX, New York-Toronto-London (1958). [Google Scholar]
- T. Faulwasser, K. Flaßkamp, S. Ober-Blëbaum, M. Schaller and K. Worthmann, Manifold turnpikes, trims, and symmetries. Math. Control Signals Syst. (2022). [Google Scholar]
- S. Gerster, M. Bambach, M. Herty and M. Imran, Feedback control for random, linear hyperbolic balance laws. Int. J. Uncertainty Quant. (2021). [Google Scholar]
- S. Gerster and M. Herty, Discretized feedback control for systems of linearized hyperbolic balance laws. Math. Control Relat. Fields 9 (2019) 517–539. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gerster and M. Herty, Entropies and symmetrization of hyperbolic stochastic Galerkin formulations. Commun. Comput. Phys. 27 (2020) 639–671. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gerster, M. Herty and E. Iacomini, Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation. Math. Biosci. Eng. 18 (2021). [Google Scholar]
- S. Gerster, M. Herty and E. Iacomini, Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation. Math. Biosci. Eng. 18 (2021) 4372–4389. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gerster, M. Herty and A. Sikstel, Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395 (2019) 186–204. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gerster, M. Herty and A. Sikstel, Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395 (2019) 186–204. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gerster, M. Herty and H. Yu, Hypocoercivity of stochastic Galerkin formulations for stabilization of kinetic equations. Commun. Math. Sci. 19 (2021) 787–806. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3 (2008) 505–518. [Google Scholar]
- L. Grüne and T. Faulwasser, Turnpike properties in optimal control: an overview of discrete-time and continuous-time results, in Handbook of Numerical Analysis, edited by E. Trelat and E. Zuazua (2022). [Google Scholar]
- L. Grüne and R. Guglielmi, Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems, SIAM J. Control Optim. 56 (2018) 1282–1302. [CrossRef] [MathSciNet] [Google Scholar]
- L. Grüne and R. Guglielmi, On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Math. Control Related Fields 11 (2021) 169–188. [CrossRef] [MathSciNet] [Google Scholar]
- L. Grüne, M. Schaller and A. Schiela, Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations. J. Differ. Equ. 268 (2020) 7311–7341. [CrossRef] [Google Scholar]
- M. Gugat, A turnpike result for convex hyperbolic optimal boundary control problems. Pure Appl. Funct. Anal. 4 (2019) 849–866. [MathSciNet] [Google Scholar]
- M. Gugat and F.M. Hante, On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems. SIAM J. Control Optim. 57 (2019) 264–289. [CrossRef] [MathSciNet] [Google Scholar]
- M. Gugat and M. Herty, Modeling, control and numerics of gas networks, in Handbook of Numerical Analysis, edited by E. Trelat and E. Zuazua (2022). [Google Scholar]
- M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34 (2011) 745–757. [CrossRef] [MathSciNet] [Google Scholar]
- M. Gugat, E. Trélat and E. Zuazua, Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst. Control Lett. 90 (2016) 61–70. [CrossRef] [Google Scholar]
- M.D. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numerica 23 (2014) 521–650. [Google Scholar]
- S. Hajian, M. Hintermüller, C. Schillings and N. Strogies, A Bayesian approach to parameter identification in gas networks. Control Cybernet. 48 (2019) 377–402. [MathSciNet] [Google Scholar]
- P. Hajłasz, Change of variables formula under minimal assumptions. Colloq. Math. 64 (1993) 93–101. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hintermüller and N. Strogies, Identification of the friction function in a semilinear system for gas transport through a network. Optim. Methods Softw. 35 (2020) 576–617. [CrossRef] [MathSciNet] [Google Scholar]
- L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Vol. 26. Springer, Paris (1997). [Google Scholar]
- J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty. J. Comput. Phys. 315 (2016) 150–168. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jin and Y. Zhu, Hypocoercivity and uniform regularity for the Vlasov–Poisson–Fokker–Planck system with uncertainty and multiple scales. SIAM J. Math. Anal. 50 (2018) 1790–1816. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kaplan and R. Tichatschke, Stable Methods for Ill-posed Variational Problems: Prox-regularization of Elliptic Variational Inequalities and Semi-infinite Problems, Vol. 3. Akademie Verlag, Berlin (1994). [Google Scholar]
- J. Kusch, G. Alldredge and M. Frank, Maximum-principle-satisfying second-order intrusive polynomial moment scheme. SIAM J. Comput. Math. 5 (2017) 23–51. [Google Scholar]
- O.P. Le Maître and O.M. Knio, Spectral Methods for Uncertainty Quantification. Springer-Verlag GmbH (2010). [CrossRef] [Google Scholar]
- P. L’Ecuyer and C. Lemieux, Recent advances in randomized quasi-monte carlo methods, in International Series in Operations Research & Management Science, Springer US (2002) 419–474. [Google Scholar]
- O.P.L. Maître and O.M. Knio, Spectral Methods for Uncertainty Quantification, 1st ed. Springer Netherlands (2010). [CrossRef] [Google Scholar]
- R. Ou, M.H. Baumann, L. Grüne and T. Faulwasser, A simulation study on turnpikes in stochastic LQ optimal control. IFAC-PapersOnLine 54 (2021) 516–521. [CrossRef] [Google Scholar]
- P. Pettersson, G. Iaccarino and J. Nordström, A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257 (2014) 481–500. [CrossRef] [MathSciNet] [Google Scholar]
- P. Pettersson, G. Iaccarino and J. Nordström, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Springer International Publishing, Switzerland (2015). [CrossRef] [Google Scholar]
- C. Prieur and J.J. Winkin, Boundary feedback control of linear hyperbolic systems: application to the Saint-Venant–Exner equations. Automatica J. IFAC 89 (2018) 44–51. [CrossRef] [MathSciNet] [Google Scholar]
- R. Pulch and D. Xiu, Generalised polynomial chaos for a class of linear conservation laws. J. Sci. Comput. 51 (2012) 293–312. [CrossRef] [MathSciNet] [Google Scholar]
- R. Shu, J. Hu and S. Jin, A stochastic Galerkin method for the Boltzmann equation with multi-dimensional random inputs using sparse wavelet bases. Numer. Math. Theory Methods Applic. 10 (2017) 465–488. [CrossRef] [Google Scholar]
- T.J. Sullivan, Introduction to uncertainty quantification, in Texts in Applied Mathematics, 1st ed. Springer, Switzerland (2015). [CrossRef] [Google Scholar]
- K. Taimre, Botev, Handbook of Monte Carlo Methods. John Wiley and Sons (2011). [Google Scholar]
- E. Trélat, C. Zhang and E. Zuazua, Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J. Control Optim. 56 (2018) 1222–1252. [CrossRef] [MathSciNet] [Google Scholar]
- N. Wiener, The homogeneous chaos. Am,. J. Math. 60 (1938) 897–936. [CrossRef] [Google Scholar]
- D. Xiu, Numerical Methods for Stochastic Computations. Princeton University Press, Princeton (2010). [Google Scholar]
- D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, NJ (2010). [Google Scholar]
- D. Xiu and G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. [CrossRef] [MathSciNet] [Google Scholar]
- M. Zanella, Structure preserving stochastic Galerkin methods for Fokker–-Planck equations with background interactions. Math. Comput. Simul. 168 (2020) 28–47. [CrossRef] [Google Scholar]
- A.J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Vol. 80. Springer, New York, NY (2006). [Google Scholar]
- Y. Zhu and S. Jin, The Vlasov–Poisson–Fokker–Planck system with uncertainty and a one-dimensional asymptotic preserving method. Multiscale Model. Simul. 15 (2017) 1502–1529. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.