Free Access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 497 - 513
DOI https://doi.org/10.1051/cocv:1999119
Published online 15 August 2002
  1. C. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 (1980) 128-144. [CrossRef] [Google Scholar]
  2. C. Berenstein, The Pompeiu problem, what's new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and applications. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow: Longman. Pitman Res. Notes Math. Ser. 347 (1996) 1-11. [Google Scholar]
  3. E. Beretta and M. Vogelius, An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles. Asymptotic Anal. 11 (1995) 289-315. [MathSciNet] [Google Scholar]
  4. H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Math. Appl. Pour la Maîtrise, Masson, Paris (1983). [Google Scholar]
  5. L. Brown, B.M. Schreiber and B.A. Taylor, Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier 23 (1973) 125-154. [Google Scholar]
  6. P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, 24. Pitman, Boston-London-Melbourne (1985). [Google Scholar]
  7. J.-L. Lions, Remarques sur la contrôlabilité approchée, Control of distributed systems, Span.-Fr. Days, Malaga/Spain 1990, Grupo Anal. Mat. Apl. Univ. Malaga 3 (1990) 77-87. [Google Scholar]
  8. J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vols. I, II, III, Dunod, Paris (1968). [Google Scholar]
  9. J.-L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: Contr. Optim. Calc. Var. 1 (1995) 1-15. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A. Osses, A rotated direction multiplier technique. Applications to the controllability of waves, elasticity and tangential Stokes control, SIAM J. Cont. Optim., to appear. [Google Scholar]
  11. A. Osses and J.-P. Puel, Approximate controllability of a linear model in solid-fluid interaction in a rectangle. to appear. [Google Scholar]
  12. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. Appl. Math. Sci. 44 (1983). [Google Scholar]
  13. J. Serrin, A symmetry problem in potential theory. Arch. Rational. Mech. Anal. 43 (1971) 304-318. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam (1977). [Google Scholar]
  15. M. Vogelius, An inverse problem for the equation Formula .Ann. Inst. Fourier, 44 (1994) 1181-1209. [Google Scholar]
  16. S.A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 (1981) 357-369. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.