Free Access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 631 - 665
DOI https://doi.org/10.1051/cocv:1999100
Published online 15 August 2002
  1. K. Alexander, J.T. Chayes et L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for 2 dimensional Bernoulli percolation. Comm. Math. Phys. 131 (1990) 1-50. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babenko, Closed geodesics, asymptotic volume and characteristics of group growth. Izv. Akad. Nauk SSSR 52 (1988) 675-711; Engl. Transl. Math. USSR Izv. 33 (1989) 1-37. [Google Scholar]
  3. I. Babenko, Volume rigidity of 2-dimensional manifolds. Mat. Zametki 48 (1990) 10-14; Engl. Transl. Math. Notes 4 (1990) 629-632. [Google Scholar]
  4. W. Blaschke, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69 (1917) 306-318. [Google Scholar]
  5. D.Yu. Burago et S. Ivanov, On asymptotic volume of tori. Geom. Funct. Anal. 5 (1995) 800-808. [CrossRef] [MathSciNet] [Google Scholar]
  6. D.Yu. Burago et S. Ivanov, On asymptotic isoperimetric constant of tori (1998) preprint. [Google Scholar]
  7. H. Brunn, Über Ovale und Eiflächen. Inaug. Diss. München (1887). [Google Scholar]
  8. D.Yu. Burago, Periodic metrics. Representation theory and dynamical systems. Adv. Sov. Math. 9 (1992) 205-210. [Google Scholar]
  9. P. Curie, Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces. Bull. Soc. Minér. France 5 (1885) 145-150. [Google Scholar]
  10. R. Cerf, Large deviation for three dimensional supercritical percolation. Prépublication d'Orsay 98.71 (1998). [Google Scholar]
  11. J. de Coninck, F. Dunlop et V. Rivasseau, On the microscopic validity of the Wulff construction and of the generalized Young equation. Comm. Math. Phys. 121 (1989) 401-419. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Dobrushin, R. Kotecky et S. Shlosman, Wulff construction, a global shape from local interaction. Transl. Math. Monogr. 104. Providence, RI, Amer. Math. Soc. (1992). [Google Scholar]
  13. G. Faber, Beweis dass unter allen homogenen membranen von gleicher Flache und gleicher Spanne, die Kreisformige den tiefsten Grundton gibt. S. B. Math. Kl. Bayer. Akad. Wiss. (1923) 169-172. [Google Scholar]
  14. H. Federer, Geometric measure theory. Springer Verlag, Berlin, Grundlehren Band 153 (1969). [Google Scholar]
  15. H. Federer, Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24 (1974) 351-407. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.F. Gauss, Principia generalia theoriae figurae fluidorum in statu aequilibrii. C.F. Gauss Werke, Band 5, Teubner (1877) 29-77. [Google Scholar]
  17. M. Gromov, Structures métriques pour les variétés riemanniennes, J. Lafontaine et P. Pansu, Eds., Textes Mathématiques, 1. Cedic/Fernand Nathan, Paris (1981). [Google Scholar]
  18. P.M. Gruber et J.M. Wills, Handbook of convex geometry. Volume A. North-Holland, Amsterdam (1993). [Google Scholar]
  19. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft der Kreise. Math. Ann. 94 (1924) 97-100. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Lott, Remark about heat diffusion on periodic spaces. Preprint Univ. Michigan (1997). [Google Scholar]
  21. V. Mazya, Classes of domains and embedding theorems for function spaces. Dokl. Akad. Nauk USSR 133 (1960) 527-530. [Google Scholar]
  22. J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. [CrossRef] [MathSciNet] [Google Scholar]
  23. R.A. Minlos et Ya.G. Sinai, The phenomenon of phase separation in some lattice models of a gas I. Mat. Sb. 73 (1967) 375-448; Math. USSR Sb. 2 (1967) 325-395; II. Tr. Mosk. Mat. Obshch. 19 (1968) 113-178; Trans. Mosc. Math. Soc. 19 (1968) 121-196. [MathSciNet] [Google Scholar]
  24. J. Moser, On the volume element on a manifold. Trans. Amer. Math. Soc. 120 (1965) 286-294. [CrossRef] [MathSciNet] [Google Scholar]
  25. V. Milman et G. Schechtman, Asymptotic theory of finite dimensional normed spaces. Springer, Berlin, Lecture Notes in Math. 1200 (1986). [Google Scholar]
  26. P. Pansu, Croisssance des boules et des géodésiques fermées dans les nilvariétés. Erg. Th. Dynam. Syst. 3 (1983) 415-446. [Google Scholar]
  27. P. Pansu, Profil isopérimétrique des métriques périodiques. Prépublication d'Orsay No. 98-44 (1998). [Google Scholar]
  28. Y. Reshetnyak, An extremal problem from the theory of convex curves. Uspekhi Mat. Nauk 8 (1953) 125-126. [Google Scholar]
  29. L.A. Santalo, Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugal. Math. 8 (1949) 155-161. [Google Scholar]
  30. U. Schnell, Periodic sphere packings and the Wulff-shape. Beiträge Algebra Geom. 40 (1999) 125-140. [Google Scholar]
  31. J. Sanchez-Hubert et E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Masson, Paris (1992). [Google Scholar]
  32. J.E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Stanford 1973. Differential Geom., Proc. Symp. Pure Math. 27 Part 1 (1975) 419-427. [Google Scholar]
  33. J.M. Wills, Lattice packings of spheres and the Wulff-shape. Mathematika 43 (1996) 229-236. [CrossRef] [MathSciNet] [Google Scholar]
  34. G. Wulff, Zur Frage der Geschwindigkeit des Wachtums und der Auflösung der Krystalflächen. Z. Krystall. Min. 34 (1901) 449-530. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.