Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 259 - 273
DOI https://doi.org/10.1051/cocv:2001110
Published online 15 August 2002
  1. S.A. Avdonin, Simultaneous controllability of several elastic strings, in Proc. CD of the Fourteenth International Symposium on Mathematical Theory of Networks and Systems. Perpignan, France, June 19-23 (2000). [Google Scholar]
  2. S.A. Avdonin and S.A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York (1995). [Google Scholar]
  3. C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital. B 2 (1999) 33-63. [Google Scholar]
  4. C. Baiocchi, V. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie du contrôle. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 281-286. [Google Scholar]
  5. J.W.S. Cassels, An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1965). [Google Scholar]
  6. S. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Jaffard, M. Tucsnak and E. Zuazua, On a theorem of Ingham. J. Fourier Anal. Appl. 3 (1997) 577-582. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. John Wiley & Sons, New York (1974). [Google Scholar]
  10. J.E. Lagnese and J.L. Lions, Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988). [Google Scholar]
  11. S. Lang, Introduction to Diophantine Approximations. Addison Wesley, New York (1966). [Google Scholar]
  12. J.-L. Lions, Controlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, Volume 1. Masson, Paris (1988). [Google Scholar]
  13. N.K. Nikol'skii, A Treatise on the Shift Operator. Moscow, Nauka, 1980 (Russian); Engl. Transl., Springer, Berlin (1986). [Google Scholar]
  14. B.S. Pavlov, Basicity of an exponential systems and Muckenhoupt's condition. Dokl. Akad. Nauk SSSR 247 (1979) 37-40 (Russian); English transl. in Soviet Math. Dokl. 20 (1979) 655-659. [Google Scholar]
  15. W. Rudin, Real and complex analysis. McGraw-Hill, New York (1987). [Google Scholar]
  16. D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986) 199-229. [Google Scholar]
  17. M. Tucsnak and G. Weiss, Simultaneous exact controllability and some applications. SIAM J. Control Optim. 38 (2000) 1408-1427. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.