Free Access
Volume 7, 2002
Page(s) 471 - 493
Published online 15 September 2002
  1. C.I. Byrnes and J.C. Willems, Adaptive stabilization of multivariable linear systems, in Proc. 23rd Conf. on Decision and Control. Las Vegas (1984) 1574-1577. [Google Scholar]
  2. A. Ilchmann, E.P. Ryan and C.J. Sangwin, Systems of controlled functional differential equations and adaptive tracking. SIAM J. Control Optim. 40 (2002) 1746-1764. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Logemann and A.D. Mawby, Low-gain integral control of infinite dimensional regular linear systems subject to input hysteresis, in Advances in Mathematical Systems Theory, edited by F. Colonius, U. Helmke, D. Prätzel-Wolters and F. Wirth. Birkhäuser Verlag, Boston, Basel, Berlin (2000) 255-293. [Google Scholar]
  4. D.E. Miller and E.J. Davison, An adaptive controller which provides an arbitrarily good transient and steady-state response. IEEE Trans. Automat. Control 36 (1991) 68-81. [CrossRef] [MathSciNet] [Google Scholar]
  5. E.P. Ryan and C.J. Sangwin, Controlled functional differential equations and adaptive stabilization. Int. J. Control 74 (2001) 77-90. [CrossRef] [Google Scholar]
  6. E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989) 435-443. [Google Scholar]
  7. C. Sparrow, The Lorenz equations: Bifurcations, chaos and strange attractors. Springer-Verlag, New York (1982). [Google Scholar]
  8. G. Weiss, Transfer functions of regular linear systems, Part 1: Characterization of regularity. Trans. Amer. Math. Soc. 342 (1994) 827-854. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.