Free Access
Issue
ESAIM: COCV
Volume 12, Number 2, April 2006
Page(s) 198 - 215
DOI https://doi.org/10.1051/cocv:2005028
Published online 22 March 2006
  1. M. Akamatsu and G. Nakamura, Well-posedness of initial-boundary value problems for piezoelectric equations. Appl. Anal. 81 (2002) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [CrossRef] [MathSciNet] [Google Scholar]
  3. N. Burq and G. Lebeau, Mesures de défaut de compacité, application au système de Lamé. Annals Scientifiques de l'École Normale Supérieure (4) 34 (2001) 817–870. [Google Scholar]
  4. T. Duyckaerts, Stabilisation haute frequence d'équations aux dérivées partialles linéaires. Thèse de Doctorat, Université Paris XI-Orsay (2004). [Google Scholar]
  5. J.N. Eringen and G.A. Maugin, Electrodynamics of continua. Vols. 1, 2, Berlin, Springer (1990). [Google Scholar]
  6. T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press (1996). [Google Scholar]
  7. B.V. Kapitonov and G. Perla Menzala, Energy decay and a transmission problem in electromagneto-elasticity. Adv. Diff. Equations 7 (2002) 819–846. [Google Scholar]
  8. B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi-electrostatic piezoelectric system in multilayered media. (submitted). [Google Scholar]
  9. V. Komornik, Exact controllability and stabilization, the multiplier method. Masson (1994). [Google Scholar]
  10. J.E. Lagnese, Boundary controllability in problems of transmission for a class of second order hyperbolic systems. ESAIM: COCV 2 (1997) 343–357. [CrossRef] [EDP Sciences] [Google Scholar]
  11. G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Archive for Rational Mechanics and Analysis 148 (1999) 179–231. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.-L. Lions, Exact controllability, stabilization and perturbation for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.-L. Lions, Controlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988). [Google Scholar]
  14. B. Miara, Controlabilité d'un corp piézoélectrique. CRAS Paris 333 (2001) 267–270. [Google Scholar]
  15. A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space. SIAM J. Math. Anal. 3 (1972) 291–294. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Pazy, Semigroup of linear operators and applications to Partial Differential Equations. Springer-Verlag (1983). [Google Scholar]
  17. D.L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986) 199–229. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.