Free Access
Volume 13, Number 4, October-December 2007
Page(s) 735 - 749
Published online 20 July 2007
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  2. G. Allaire, Dispersive limits in the homogenization of the wave equation. Annales de la Faculté des Sciences de Toulouse XII (2003) 415–431. [Google Scholar]
  3. G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91–117. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153–208. [Google Scholar]
  5. G. Allaire and F. Malige, Analyse asymptotique spectrale d'un probléme de diffusion neutronique. C. R. Acad. Sci. Paris Sér. I 324 (1997) 939–944. [Google Scholar]
  6. G. Allaire and R. Orive, On the band gap structure of Hill's equation. J. Math. Anal. Appl. 306 (2005) 462–480. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operator. Comm. Partial Differential Equations 27 (2002) 705–725. [Google Scholar]
  8. G. Allaire, Y. Capdeboscq, A. Piatnitski, V. Siess and M. Vanninathan, Homogenization of periodic systems with large potentials. Arch. Rational Mech. Anal. 174 (2004) 179–220. [Google Scholar]
  9. P.H. Anselone, Collectively compact operator approximation theory and applications to integral equations. Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1971). [Google Scholar]
  10. A. Benchérif-Madani and É. Pardoux, Locally periodic homogenization. Asymptot. Anal. 39 (2004) 263–279. [MathSciNet] [Google Scholar]
  11. A. Benchérif-Madani and É. Pardoux, Homogenization of a diffusion with locally periodic coefficients. Séminaire de Probabilités XXXVIII Lect. Notes Math. 1857 (2005) 363–392. [Google Scholar]
  12. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). [Google Scholar]
  13. Y. Capdeboscq, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I 327 (1998) 807–812. [Google Scholar]
  14. Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 567–594. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms. (2005) (in preparation). [Google Scholar]
  16. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Piatnitski, Asymptotic behaviour of the ground state of singularly perturbed elliptic equations. Commun. Math. Phys. 197 (1998) 527–551. [CrossRef] [Google Scholar]
  18. A. Piatnitski, Ground State Asymptotics for Singularly Perturbed Elliptic Problem with Locally Periodic Microstructure. Preprint (2006). [Google Scholar]
  19. J. Simon, Compact sets in the space Formula . Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  20. S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of scalar elliptic operators. Asymptotic Anal. 39 (2004) 15–44. [Google Scholar]
  21. M. Vanninathan, Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239–271. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.