Free Access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 717 - 734
DOI https://doi.org/10.1051/cocv:2007032
Published online 20 July 2007
  1. G. Alberti and A. DeSimone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005) 79–97. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, I: integral representation and Γ-convergence. J. Math. Pures. Appl. 69 (1990) 285–305. [MathSciNet] [Google Scholar]
  3. L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures. Appl. 69 (1990) 307–333. [MathSciNet] [Google Scholar]
  4. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000). [Google Scholar]
  6. G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in calculus of variations. Ann. Mat. Pura Appl. 170 (1996) 329–357. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093–1121. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Bouchitté and P. Seppecher, Cahn and Hilliard fluid on an oscillating boundary. Motion by mean curvature and related topics (Trento, 1992), de Gruyter, Berlin (1994) 23–42. [Google Scholar]
  9. G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1–18. [MathSciNet] [Google Scholar]
  10. B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609–646. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Braides, Approximation of Free-Discontinuity Problems. Lect. Notes Math. 1694, Springer, Berlin (1998). [Google Scholar]
  12. A. Braides, Γ -convergence for Beginners. Oxford University Press, Oxford (2002). [Google Scholar]
  13. A. Braides, A handbook of Γ>-convergence, in Handbook of Differential Equations. Stationary Partial Differential Equations, Vol. 3, M. Chipot and P. Quittner Eds., Elsevier (2006). [Google Scholar]
  14. A. Braides and V. Chiadò Piat, Integral representation results for functionals defined in Formula . J. Math. Pures Appl. 75 (1996) 595–626. [Google Scholar]
  15. A. Braides and R. March, Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 58 (2006) 71–121. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Braides and M. Solci, A remark on the approximation of free-discontinuity problems. Manuscript (2003). [Google Scholar]
  17. A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297–356. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173 (2004) 25–68. [MathSciNet] [Google Scholar]
  19. A. Chambolle and M. Solci, Interaction of a bulk and a surface energy with a geometrical constraint. SIAM J. Math. Anal. 39 (2007) 77–102. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Chambolle, E. Séré and C.Zanini, Progressive water-waves: a global variational approach. (In preparation). [Google Scholar]
  21. E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser Verlag, Basel (1984). [Google Scholar]
  22. J.M. Morel and S. Solimini, Variational Methods in Image Segmentation. Progr. Nonlinear Differ. Equ. Appl. 14, Birkhäuser, Basel (1995). [Google Scholar]
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.