Free Access
Issue
ESAIM: COCV
Volume 14, Number 1, January-March 2008
Page(s) 105 - 147
DOI https://doi.org/10.1051/cocv:2007047
Published online 21 September 2007
  1. F. Albertini and D. D'Alessandro, Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Automat. Control 48 (2003) 1399–1403. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels (1991). [Google Scholar]
  3. C. Altafini, Controllability of quantum mechanical systems by root space decomposition of su(n). J. Math. Phys. 43 (2002) 2051–2062. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982). [Google Scholar]
  5. L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Matematica (N.S.) 63 (2006) 293–325. [Google Scholar]
  6. L. Baudouin and J. Salomon, Constructive solution of a bilinear control problem. C.R. Math. Acad. Sci. Paris 342 (2006) 119–124. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control. J. Differential Equations 216 (2005) 188–222. [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Beauchard, Local controllability of a 1-D beam equation. SIAM J. Control Optim. (to appear). [Google Scholar]
  9. K. Beauchard, Local Controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well. J. Functional Analysis 232 (2006) 328–389. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Brockett, Lie theory and control systems defined on spheres. SIAM J. Appl. Math. 25 (1973) 213–225. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Cancès, C. Le Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger. C.R. Acad. Sci. Paris, Série I 330 (2000) 567–571. [Google Scholar]
  13. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295–312. [CrossRef] [MathSciNet] [Google Scholar]
  14. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271–276. [Google Scholar]
  15. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [MathSciNet] [Google Scholar]
  16. J.-M. Coron, Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513–554. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well. C.R. Acad. Sci., Série I 342 (2006) 103–108. [Google Scholar]
  18. J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367–398. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-M. Coron and A. Fursikov, Global exact controllability of the 2D Navier-Stokes equation on a manifold without boundary. Russ. J. Math. Phys. 4 (1996) 429–448. [Google Scholar]
  20. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 565–618. [CrossRef] [MathSciNet] [Google Scholar]
  21. O. Glass, On the controllability of the 1D isentropic Euler equation. J. European Mathematical Society 9 (2007) 427–486. [CrossRef] [Google Scholar]
  22. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences] [Google Scholar]
  23. O. Glass, On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003) 332–379. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Gromov, Partial Differential Relations. Springer-Verlag, Berlin-New York-London (1986). [Google Scholar]
  25. A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457–465. [MathSciNet] [Google Scholar]
  26. L. Hörmander, On the Nash-Moser Implicit Function Theorem. Annales Academiae Scientiarum Fennicae (1985) 255–259. [Google Scholar]
  27. T. Horsin, On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83–95. [CrossRef] [EDP Sciences] [Google Scholar]
  28. R. Ilner, H. Lange and H. Teismann, Limitations on the control of Schrödinger equations. ESAIM: COCV 12 (2006) 615–635. [CrossRef] [EDP Sciences] [Google Scholar]
  29. T. Kato, Perturbation Theory for Linear operators. Springer-Verlag, Berlin, New-York (1966). [Google Scholar]
  30. W. Krabs, On moment theory and controllability of one-dimensional vibrating systems and heating processes. Springer – Verlag (1992). [Google Scholar]
  31. I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differential Integral Equations 5 (1992) 571–535. [Google Scholar]
  32. I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carlemann estimates. J. Inverse Ill Posed-Probl. 12 (2004) 183–231. [MathSciNet] [Google Scholar]
  33. G. Lebeau, Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291. [MathSciNet] [Google Scholar]
  34. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24–34. [CrossRef] [MathSciNet] [Google Scholar]
  35. M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control 49 (2004) 745–747. [CrossRef] [MathSciNet] [Google Scholar]
  36. E. Sontag, Control of systems without drift via generic loops. IEEE Trans. Automat. Control 40 (1995) 1210–1219. [CrossRef] [MathSciNet] [Google Scholar]
  37. G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, C. Le Bris and M. Defranceschi Eds., Lect. Notes Chemistry 74, Springer (2000). [Google Scholar]
  38. E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lect. Notes 33 (2003) 193–211. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.