Free Access
Volume 14, Number 4, October-December 2008
Page(s) 699 - 724
Published online 07 February 2008
  1. R.C. Arkin, Behavior Based Robotics. The MIT Press (1998). [Google Scholar]
  2. J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984). [Google Scholar]
  3. J.-P. Aubin, J. Lygeros, M. Quincampoix, S.S. Sastry and N. Seube, Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Aut. Cont. 47 (2002) 2–20. [CrossRef] [Google Scholar]
  4. A. Back, J. Guckenheimer and M. Myers, A dynamical simulation facility for hybrid systems, in Hybrid Systems, Lect. Notes Comput. Sci. 36 (1993) 255–267. [Google Scholar]
  5. D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect: Stability, Theory, and Applications. Ellis Horwood Limited (1989). [Google Scholar]
  6. O. Beker, C.V. Hollot, Y. Chait and H. Han, Fundamental properties of reset control systems. Automatica 40 (2004) 905–915. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Boccadoro, Y. Wardi, M. Egerstedt and E. Verriest, Optimal control of switching surfaces in hybrid dynamical systems. Discrete Event Dyn. Syst. 15 (2005) 433–448. [CrossRef] [MathSciNet] [Google Scholar]
  8. M.S. Branicky, Studies in hybrid systems: Modeling, analysis, and control. Ph.D. dissertation, Dept. Elec. Eng. and Computer Sci., MIT (1995). [Google Scholar]
  9. M.S. Branicky, V.S. Borkar and S.K. Mitter, A unified framework for hybrid control: Model and optimal control theory. IEEE Trans. Aut. Cont. 43 (1998) 31–45. [CrossRef] [Google Scholar]
  10. R.W. Brocket, Hybrid Models for Motion Control Systems, in Essays on Control: Perspectives in the Theory and its Applications, H.L. Trentelman and J.C. Willems Eds., Birkhäuser (1993) 29–53. [Google Scholar]
  11. M. Broucke and A. Arapostathis, Continuous selections of trajectories of hybrid systems. Systems Control Lett. 47 (2002) 149–157. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Cai, A.R. Teel and R. Goebel, Converse Lyapunov theorems and robust asymptotic stability for hybrid systems, in Proc. 24th American Control Conference (2005) 12–17. [Google Scholar]
  13. F. Ceragioli, Some remarks on stabilization by means of discontinuous feedbacks. Systems Control Lett. 45 (2002) 271–281. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  14. V. Chellaboina, S.P. Bhat and W.H. Haddad, An invariance principle for nonlinear hybrid and impulsive dynamical systems. Nonlin. Anal. 53 (2003) 527–550. [CrossRef] [Google Scholar]
  15. F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Aut. Cont. 42 (1997) 1394–1407. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.C. Clegg, A nonlinear integrator for servomechanisms. Transactions A.I.E.E. 77 (Part II) 41–42, 1958. [Google Scholar]
  17. P. Collins, A trajectory-space approach to hybrid systems, in Proc. 16th MTNS (2004). [Google Scholar]
  18. P. Collins and J. Lygeros, Computability of finite-time reachable sets for hybrid systems, in Proc. 44th IEEE Conference on Decision Control (2005) 4688–4693. [Google Scholar]
  19. J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estimation Control 4 (1994) 67–84. [Google Scholar]
  20. M. Egerstedt, Behavior based robotics using hybrid automata, in Hybrid Systems: Computation and Control, Lect. Notes Comput. Sci. 1790 (2000) 103–116. [Google Scholar]
  21. A.F. Filippov, Differential equations with discontinuous right-hand sides (English). Matemat. Sbornik. 151 (1960) 99–128. [Google Scholar]
  22. M. Garavello and B. Piccoli, Hybrid necessary principle. SIAM J. Control Optim. 43 (2005) 1867–1887. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Goebel and A.R. Teel, Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42 (2006) 573–587. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai and R.G. Sanfelice, Hybrid systems: Generalized solutions and robust stability, in Proc. 6th IFAC Symposium in Nonlinear Control Systems (2004) 1–12. [Google Scholar]
  25. O. Hàjek, Discontinuous differential equations I. J. Diff. Eqn. 32 (1979) 149–170. [CrossRef] [MathSciNet] [Google Scholar]
  26. H. Hermes, Discontinuous vector fields and feedback control, in Differential Equations and Dynamical Systems, J.K. Hale and J.P. LaSalle Eds., Academic Press, New York (1967) 155–165. [Google Scholar]
  27. J.P. Hespanha, Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle. IEEE Trans. Aut. Cont. 49 (2004) 470–482. [CrossRef] [Google Scholar]
  28. J.P. Hespanha, A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal. (Special Issue on Hybrid Systems) 62 (2005) 1353–1383. [Google Scholar]
  29. C.M. Kellet and A.R. Teel, Smooth Lyapunov functions and robustness of stability for differential inclusions. Systems Control Lett. 52 (2004) 395–405. [CrossRef] [MathSciNet] [Google Scholar]
  30. N.N. Krasovskii, Game-Theoretic Problems of Capture. Nauka, Moscow (1970). [Google Scholar]
  31. N.N. Krasovskii and A.I. Subbotin, Game-Theoretical Control Problems. Springer-Verlag (1988). [Google Scholar]
  32. K.R. Krishnan and I.M. Horowitz, Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed system tolerances. Inter. J. Control 19 (1974) 689–706. [CrossRef] [Google Scholar]
  33. J. Lygeros, K.H. Johansson, S.S. Sastry and M. Egerstedt, On the existence of executions of hybrid automata, in Proc. 41st Conference on Decision and Control (1999) 2249–2254. [Google Scholar]
  34. J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang and S.S. Sastry, Dynamical properties of hybrid automata. IEEE Trans. Aut. Cont. 48 (2003) 2–17. [CrossRef] [Google Scholar]
  35. A.N. Michel, L. Wang and B. Hu, Qualitative Theory of Dynamical Systems. Dekker (2001). [Google Scholar]
  36. D. Nesic, L. Zaccarian and A.R. Teel, Stability properties of reset systems, in Proc. 16th IFAC World Congress in Prague (2005). [Google Scholar]
  37. C. Prieur, Asymptotic controllability and robust asymptotic stabilizability. SIAM J. Control Optim. 43 (2005) 1888–1912. [CrossRef] [MathSciNet] [Google Scholar]
  38. C. Prieur, R. Goebel and A.R. Teel, Results on robust stabilization of asymptotically controllable systems by hybrid feedback, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference (2005) 2598–2603. [Google Scholar]
  39. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998). [Google Scholar]
  40. A.V. Roup, D.S. Bernstein, S.G. Nersesov, W.M. Haddad and V. Chellaboina, Limit cycle analysis of the verge and foliot clock escapement using impulsive differential equations and Poincaré maps. Inter. J. Control 76 (2003) 1685–1698. [CrossRef] [Google Scholar]
  41. R.G. Sanfelice, R. Goebel and A.R. Teel, Results on convergence in hybrid systems via detectability and an invariance principle, in Proc. 24th IEEE American Control Conference (2005) 551–556. [Google Scholar]
  42. J. Sprinkle, A.D. Ames, A. Pinto, H. Zheng and S.S. Sastry, On the partitioning of syntax and semantics for hybrid systems tools, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference (2005). [Google Scholar]
  43. S.Y. Tang and R.A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50 (2005) 257–292. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  44. L. Tavernini, Differential automata and their discrete simulators. Nonlin. Anal. 11 (1987) 665–683. [CrossRef] [Google Scholar]
  45. L. Tavernini, Generic properties of impulsive hybrid systems. Dynamic Systems & Applications 13 (2004) 533–551. [Google Scholar]
  46. S.E. Tuna, R.G. Sanfelice, M.J. Messina and A.R. Teel, Hybrid MPC: Open-minded but not easily swayed, in Proc. International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control (2005). [Google Scholar]
  47. A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences. Springer (2000). [Google Scholar]
  48. H.S. Witsenhausen, A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Aut. Cont. 11 (1966) 161–167. [CrossRef] [Google Scholar]
  49. L. Zaccarian, D. Nesic and A.R. Teel, First order reset elements and the Clegg integrator revisited, in Proc. 24th American Control Conference (2005) 563–568. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.