Free Access
Issue
ESAIM: COCV
Volume 15, Number 4, October-December 2009
Page(s) 745 - 762
DOI https://doi.org/10.1051/cocv:2008045
Published online 19 July 2008
  1. J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984). [Google Scholar]
  2. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, New York (1996). [Google Scholar]
  3. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). [Google Scholar]
  4. A. Ilchmann, Non-Identifier-Based High-Gain Adaptive Control. Springer-Verlag, London (1993). [Google Scholar]
  5. A. Ilchmann, E.P. Ryan and C.J. Sangwin, Systems of controlled functional differential equations and adaptive tracking. SIAM J. Contr. Opt. 40 (2002) 1746–1764. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Ilchmann, E.P. Ryan and C.J. Sangwin, Tracking with prescribed transient behaviour. ESAIM: COCV 7 (2002) 471–493. [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. Ilchmann, E.P. Ryan and P.N. Townsend, Tracking control with prescribed transient behaviour for systems of known relative degree. Systems Control Lett. 55 (2006) 396–406. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Ilchmann, E.P. Ryan and P.N. Townsend, Tracking with prescribed transient behaviour for nonlinear systems of known relative degree. SIAM J. Contr. Opt. 46 (2007) 210–230. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.D. Loewen, Optimal Control via Nonsmooth Analysis, CRM Proc. & Lecture Notes 2. AMS, Providence RI (1993). [Google Scholar]
  10. H. Logemann and A.D. Mawby, Low-gain integral control of infinite dimensional regular linear systems subject to input hysteresis, in Advances in Mathematical Systems Theory, F. Colonius, U. Helmke, D. Prätzel-Wolters and F. Wirth Eds., Birkhäuser Verlag, Boston (2001) 255–293. [Google Scholar]
  11. R.D. Nussbaum, Some remarks on a conjecture in parameter adaptive control. Systems Control Lett. 3 (1983) 243–246. [CrossRef] [MathSciNet] [Google Scholar]
  12. E.P. Ryan and C.J. Sangwin, Controlled functional differential equations and adaptive stabilization. Int. J. Control 74 (2001) 77–90. [CrossRef] [Google Scholar]
  13. E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34 (1989) 435–443. [CrossRef] [MathSciNet] [Google Scholar]
  14. E.D. Sontag, Adaptation and regulation with signal detection implies internal model. Systems Control Lett. 50 (2003) 119–126. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer-Verlag, New York (1982). [Google Scholar]
  16. M. Vidyasagar, Control System Synthesis: A Factorization Approach. MIT Press, Cambridge (1985). [Google Scholar]
  17. W.M. Wonham, Linear Multivariable Control: A Geometric Approach. 2nd edn., Springer-Verlag, New York (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.