Free Access

This article has an erratum: [erratum]

Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 794 - 805
DOI https://doi.org/10.1051/cocv/2009014
Published online 02 July 2009
  1. A. Agrachev and M. Caponigro, Controllability on the group of diffeomorphisms. Preprint (2008). [Google Scholar]
  2. J.H. Albert, Genericity of simple eigenvalues for elliptic PDE's. Proc. Amer. Math. Soc. 48 (1975) 413–418. [CrossRef] [MathSciNet] [Google Scholar]
  3. W. Arendt and D. Daners, Uniform convergence for elliptic problems on varying domains. Math. Nachr. 280 (2007) 28–49. [CrossRef] [MathSciNet] [Google Scholar]
  4. V.I. Arnol'd, Modes and quasimodes. Funkcional. Anal. i Priložen. 6 (1972) 12–20. [Google Scholar]
  5. J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982) 575–597. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Beauchard, Y. Chitour, D. Kateb and R. Long, Spectral controllability for 2D and 3D linear Schrödinger equations. J. Funct. Anal. 256 (2009) 3916–3976. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 329–349. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Chitour, J.-M. Coron and M. Garavello, On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete Contin. Dyn. Syst. 14 (2006) 643–672. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Comm. Partial Differential Equations 19 (1994) 213–243. [CrossRef] [MathSciNet] [Google Scholar]
  10. Y.C. de Verdière, Sur une hypothèse de transversalité d'Arnol'd. Comment. Math. Helv. 63 (1988) 184–193. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Systems Control Lett. 48 (2003) 199–209. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  12. P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44 (2005) 349–366 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques et Applications 48. Springer-Verlag, Berlin (2005). [Google Scholar]
  14. L. Hillairet and C. Judge, Generic spectral simplicity of polygons. Proc. Amer. Math. Soc. 137 (2009) 2139–2145. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag New York, Inc., New York (1966). [Google Scholar]
  16. J.-L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: COCV 1 (1995/1996) 1–15 (electronic). [Google Scholar]
  17. J.-L. Lions and E. Zuazua, A generic uniqueness result for the Stokes system and its control theoretical consequences, in Partial differential equations and applications, Lect. Notes Pure Appl. Math. 177, Dekker, New York (1996) 221–235. [Google Scholar]
  18. T.J. Mahar and B.E. Willner, Sturm-Liouville eigenvalue problems in which the squares of the eigenfunctions are linearly dependent. Comm. Pure Appl. Math. 33 (1980) 567–578. [CrossRef] [MathSciNet] [Google Scholar]
  19. A.M. Micheletti, Metrica per famiglie di domini limitati e proprietà generiche degli autovalori. Ann. Scuola Norm. Sup. Pisa 26 (1972) 683–694. [MathSciNet] [Google Scholar]
  20. A.M. Micheletti, Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo. Ann. Scuola Norm. Sup. Pisa. 26 (1972) 151–169. [Google Scholar]
  21. F. Murat and J. Simon, Étude de problèmes d'optimal design, Lecture Notes in Computer Sciences 41. Springer-Verlag, Berlin (1976). [Google Scholar]
  22. J.H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation. SIAM J. Control Optim. 39 (2000) 1585–1614 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  23. J.H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions. Adv. Differential Equations 6 (2001) 987–1023. [MathSciNet] [Google Scholar]
  24. J.H. Ortega and E. Zuazua, Addendum to: Generic simplicity of the spectrum and stabilization for a plate equation [SIAM J. Control Optim. 39 (2000) 1585–1614; mr1825594]. SIAM J. Control Optim. 42 (2003) 1905–1910 (electronic). [Google Scholar]
  25. J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization: Shape sensitivity analysis, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin (1992). [Google Scholar]
  26. E.D. Sontag, Mathematical control theory: Deterministic finite-dimensional systems, Texts in Applied Mathematics 6. Springer-Verlag, New York (1990). [Google Scholar]
  27. M. Teytel, How rare are multiple eigenvalues? Comm. Pure Appl. Math. 52 (1999) 917–934. [CrossRef] [MathSciNet] [Google Scholar]
  28. K. Uhlenbeck, Generic properties of eigenfunctions. Amer. J. Math. 98 (1976) 1059–1078. [CrossRef] [MathSciNet] [Google Scholar]
  29. E. Zuazua, Switching controls. J. Eur. Math. Soc. (to appear). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.