Free Access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 764 - 793
DOI https://doi.org/10.1051/cocv/2009021
Published online 02 July 2009
  1. A. Arapostathis and M.E. Broucke, Stability and controllability of planar conewise linear systems. Systems Control Lett. 56 (2007) 150–158. [CrossRef] [MathSciNet] [Google Scholar]
  2. V.I. Arnold, Mathematical Methods of Classical Mechanics. Second Edition, Springer-Verlag, New York (1989). [Google Scholar]
  3. S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry. Springer-Verlag (2003). [Google Scholar]
  4. A. Berman, M. Neumann and R.J. Stern, Nonnegative Matrices in Dynamical Systems. John Wiley & Sons, New York (1989). [Google Scholar]
  5. S.P. Bhat and D.S. Bernstein, Lyapunov analysis of semistability, in Proceedings of 1999 American Control Conference, San Diego (1999) 1608–1612. [Google Scholar]
  6. J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry. Springer (1998). [Google Scholar]
  7. N.K. Bose, Applied Multidimensional Systems Theory. Van Nostrand Reinhold (1982). [Google Scholar]
  8. B. Brogliato, Some perspectives on analysis and control of complementarity systems. IEEE Trans. Automat. Contr. 48 (2003) 918–935. [CrossRef] [Google Scholar]
  9. M.K. Çamlibel, W.P.M.H. Heemels and J.M. Schumacher, On linear passive complementarity systems. European J. Control 8 (2002) 220–237. [CrossRef] [Google Scholar]
  10. M.K. Çamlıbel, J.S. Pang and J. Shen, Lyapunov stability of complementarity and extended systems. SIAM J. Optim. 17 (2006) 1056–1101. [Google Scholar]
  11. M.K. Çamlibel, J.S. Pang and J. Shen, Conewise linear systems: non-Zenoness and observability. SIAM J. Control Optim. 45 (2006) 1769–1800. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.K. Çamlibel, W.P.M.H. Heemels and J.M. Schumacher, Algebraic necessary and sufficient conditions for the controllability of conewise linear systems. IEEE Trans. Automat. Contr. 53 (2008) 762–774. [CrossRef] [Google Scholar]
  13. C.T. Chen, Linear System Theory and Design. Oxford University Press, Oxford (1984). [Google Scholar]
  14. R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press Inc., Cambridge (1992). [Google Scholar]
  15. F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York (2003). [Google Scholar]
  16. D. Goeleven and B. Brogliato, Stability and instability matrices for linear evoluation variational inequalities. IEEE Trans. Automat. Contr. 49 (2004) 483–490. [CrossRef] [Google Scholar]
  17. L. Han and J.S. Pang, Non-Zenoness of a class of differential quasi-variational inequalities. Math. Program. Ser. A 121 (2009) 171–199. [CrossRef] [Google Scholar]
  18. W.P.M.H. Heemels, J.M. Schumacher and S. Weiland, Linear complementarity systems. SIAM J. Appl. Math. 60 (2000) 1234–1269. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.P. Hespanha, Uniform stability of switched linear systems: extension of LaSalle's invariance principle. IEEE Trans. Automat. Contr. 49 (2004) 470–482. [Google Scholar]
  20. J.P. Hespanha, D. Liberzon, D. Angeli and E.D. Sontag, Nonlinear norm-observability notions and stability of switched systems. IEEE Trans. Automat. Contr. 50 (2005) 154–168. [CrossRef] [Google Scholar]
  21. H. Khalil, Nonlinear Systems. Second Edition, Prentice Hall (1996). [Google Scholar]
  22. J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion. American Math. Soc. Translation 24 (1963) 19–77. [Google Scholar]
  23. D. Liberzon, J.P. Hespanha and A.S. Morse, Stability of switched systems: a Lie-algebraic condition. Systems Control Lett. 37 (1999) 117–122. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Lygeros, K.H. Johansson, S.N. Simic, J. Zhang and S. Sastry, Dynamic properties of hybrid automata. IEEE Trans. Automat. Contr. 48 (2003) 2–17. [Google Scholar]
  25. P. Mason, U. Boscain and Y. Chitour, Common polynomial Lyapunov functions for linear switched systems. SIAM J. Control Optim. 45 (2006) 226–245. [CrossRef] [MathSciNet] [Google Scholar]
  26. A.P. Molchanove and Y.S. Pyatnitskiy, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989) 59–64. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Pachter and D.H. Jacobson, Observability with a conic observation set. IEEE Trans. Automat. Contr. 24 (1979) 632–633. [CrossRef] [Google Scholar]
  28. J.S. Pang and J. Shen, Strongly regular differential variational systems. IEEE Trans. Automat. Contr. 52 (2007) 242–255. [CrossRef] [Google Scholar]
  29. J.S. Pang and D. Stewart, Differential variational inequalities. Math. Program. Ser. A 113 (2008) 345–424. [CrossRef] [Google Scholar]
  30. P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser. B 96 (2003) 293–320. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Scholtes, Introduction to Piecewise Differentiable Equations. Habilitation thesis, Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe, Germany (1994). [Google Scholar]
  32. J.M. Schumacher, Complementarity systems in optimization. Math. Program. Ser. B 101 (2004) 263–295. [Google Scholar]
  33. J. Shen and J.S. Pang, Linear complementarity systems: Zeno states. SIAM J. Control Optim. 44 (2005) 1040–1066. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Shen and J.S. Pang, Linear complementarity systems with singleton properties: non-Zenoness, in Proceedings of 2007 American Control Conference, New York (2007) 2769–2774. [Google Scholar]
  35. J. Shen and J.S. Pang, Semicopositive linear complementarity systems. Internat. J. Robust Nonlinear Control 17 (2007) 1367–1386. [CrossRef] [MathSciNet] [Google Scholar]
  36. G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics 41. American Mathematical Society, Providence (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.