Free Access
Volume 18, Number 2, April-June 2012
Page(s) 360 - 382
Published online 13 April 2011
  1. D. Aeyels, Stabilization by smooth feedback of the angular velocity of a rigid body. Syst. Control Lett. 5 (1985) 59–63. [CrossRef] [Google Scholar]
  2. D. Aeyels, Stabilization of a class of nonlinear systems by a smooth feedback control. Syst. Control Lett. 5 (1985) 289–294. [CrossRef] [Google Scholar]
  3. D. Aeyels and M. Szafranski, Comments on the stabilizablity of angular velocity of rigid body. Syst. Control Lett. 10 (1988) 35–39. [CrossRef] [Google Scholar]
  4. V. Andriano, Global feedback stabilization of the angular velocity of symmetric rigid body. Syst. Control Lett. (1993) 361–364. [Google Scholar]
  5. A. Astolfi, Asymptotic stabilization of nonholonomic systems with discontinuous control. Ph.D. thesis, Swiss Federal Institute of Thechnology, Zurich (1996). [Google Scholar]
  6. A. Astolfi, Discontinuous control of nonholonomic systems. Syst. Control Lett. 27 (1996) 37–45. [CrossRef] [Google Scholar]
  7. A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientific (1991). [Google Scholar]
  8. A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory. Communications and Control Engineering, Springer-Verlag (2005). [Google Scholar]
  9. L. Beji, A. Abichou and Y. Bestaoui, Position and attitude control of an underactuated autonomous airship. International Journal of Differential Equations and Applications 8 (2004) 231–255. [Google Scholar]
  10. M.K. Bennani and P. Rouchon, Robust stabilization of flat and chained systems, in European Control Conf. (1995). [Google Scholar]
  11. S.P. Bhat and D.S. Bernstein, Finite-time stability of homogenoues systems, in Procceding of the American Control Conference, Albuquerque, New Mexico (1997) 2513–2514. [Google Scholar]
  12. S.P. Bhat and D.S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Contr. 43 (1998) 678–682. [CrossRef] [Google Scholar]
  13. S.P. Bhat and D.S. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000) 751–766. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.P. Bhat and D.S. Bernstein, Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17 (2005) 101–127. [CrossRef] [Google Scholar]
  15. R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential geometric control theory, Progress in Math. 27 (1983) 181–191. [Google Scholar]
  16. S. Celikovsky and H. Nijmeijer, On the relation between local controllability and stabilizability for a class of nonliner systems. IEEE Trans. Automat. Contr. 42 (1996) 90–94. [CrossRef] [Google Scholar]
  17. F.M. Ceragioli, Discontinuous Ordinary Differential Equations and Stabilization. Tesi di dottorato di ricerca in matematica, Consorzio delle universit’a di Cagliari, Firenze, Modena, Perugia e Siena (1999). [Google Scholar]
  18. F.M. Ceragioli, Some remarks on stabilization by means of discontinuous feedbacks. Syst. Control Lett. 45 (2002) 271–281. [CrossRef] [Google Scholar]
  19. J.-M. Coron, A necessary condition for feedback stabilization. Syst. Control Lett. 14 (1990) 227–232. [CrossRef] [Google Scholar]
  20. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295–312. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-M. Coron, Relations entre commandabilité et stabilisations non linéaires, in Nonlinear partial differential equations and their applications XI, Collège de France Seminar, Paris (1989–1991), Pitman Res. Notes Math. Ser. 299, Longman Sci. Tech., Harlow (1994) 68–86. [Google Scholar]
  22. J.-M. Coron, Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws. SIAM J. Control Optim. 33 (1995) 804–833. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136. American Mathematical Society (2007). [Google Scholar]
  24. J.-M. Coron and B. d’Andréa Novel, Smooth stabilizing time-varying control laws for a class of nonlinear systems. Applications to mobile robots, in IFAC Nonlinear Control Systems Design, M. Fliess Ed., Bordeaux, France (1992) 413–418. [Google Scholar]
  25. J.-M. Coron and E.Y. Keraï, Explicit feedbacks stabilizing the attitude of a rigid spacecraft with two torques. Automatica 32 (1996) 669–677. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.-M. Coron and J.-B. Pomet, A remark on the design of time-varying stabilizing feedback laws for controllable systems without drift, in IFAC Nonlinear Control Systems Design, M. Fliess Ed., Bordeaux, France (1992) 397–401. [Google Scholar]
  27. J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estimation and Control 4 (1994) 67–84. [Google Scholar]
  28. A.L. Fradkov, I.V. Miroshnik and V.O. Nikiforov, Nonlinear and adaptive Control of Complex Systems. Kluwer Academic (2001). [Google Scholar]
  29. W. Haddad, V. Chellaboina and S. Nersesov, A unification between partial stability of state-dependent impulsive systems and stability theory for time-dependent impulsive systems, in Proc. Amer. Contr. Conf. (2003) 4004–4009. [Google Scholar]
  30. V. Haimo, Finite time controllers. SIAM J. Control Optim. 24 (1986) 760–770. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, Lecture notes in pure and applied Math. 127, S. Elaydi Ed., Proc. Colorado Springs conf. Marcel Dekker Inc., New York (1990) 249–260. [Google Scholar]
  32. Y. Hong, Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46 (2002) 231–236. [CrossRef] [Google Scholar]
  33. Y. Hong and Z.-P. Jiang, Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Automat. Contr. 51 (2006) 1950–1956. [CrossRef] [Google Scholar]
  34. Y. Hong, J. Huang and Y. Xu, On an output feedback finite-time stabilization problem. IEEE Trans. Automat. Contr. 46 (2001) 305–309. [CrossRef] [Google Scholar]
  35. X. Huang, W. Lin and B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41 (2005) 881–888. [CrossRef] [MathSciNet] [Google Scholar]
  36. C. Jammazi, Backstepping and Partial Asymptotic Stabilization. Applications to Partial Attitude Control. International Journal of Control Automation and Systems 6 (2008) 859–872. [Google Scholar]
  37. C. Jammazi, Finite-time partial stabilizability of chained systems. C. R. Acad. Sci. Paris., Sér. I 346 (2008) 975–980. [CrossRef] [Google Scholar]
  38. C. Jammazi, On the partial attitude control of axisymmetric rigid spacecraft, in Intelligent Systems and Automation : 1st Mediterranean Conference on Intelligent Systems and Automation, AIP Conf. Proc. 1019, H. Arioui, R. Marrouki and H.A. Abbassi Eds., Annaba, Algeria (2008) 302–307. [Google Scholar]
  39. C. Jammazi, Further results on finite-time partial stability and stabilization. Applications to nonlinear control systems, in Intelligent Systems and Automation : 2nd Mediterranean Conference on Intelligent Systems and Automation, AIP Conf. Proc. 1107, L. Beji, S. Otmane and A. Abichou Eds., Zarzis, Tunisia (2009) 111–116. [Google Scholar]
  40. C. Jammazi, On a sufficient condition for finite-time partial stability and stabilization : Applications. IMA J. Math. Control Inf. 27 (2010) 29–56. [CrossRef] [Google Scholar]
  41. C. Jammazi and A. Abichou, Partial stabilizability of an underactuated autonomous underwater vehicle, in Proc. in International Conference “System Identification and Control Problems” SICPRO’07, Moscow Institute of Control (2007) 976–986. [Google Scholar]
  42. H.K. Khalil, Nonlinear Systems. Prentice Hall (2002). [Google Scholar]
  43. A.L. Kovalev and A.L. Zuyev, On nonasymptotic stabilization of controllable systems, in Proceedings of the 14 International Symposium on Mathematical theory of networks and systems (MTNS), Perpignan, France (2000). [Google Scholar]
  44. D.A. Lizárraga, P. Morin and C. Samson, Non-robustness of continuous homogeneous stabilizers for affine control systems, in Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA (1999) 855–860. [Google Scholar]
  45. M. Maini, P. Morin, J.-B. Pomet and C. Samson, On the robust stabilization of chained systems by continuous feedback, in Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA (1999) 3472–3477. [Google Scholar]
  46. R.T. M’Closkey and R.M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Contr. 42 (1997) 614–628. [CrossRef] [MathSciNet] [Google Scholar]
  47. P. Morin and C. Samson, Time-varying exponential stabilization of a rigid spacecraft with two control torques. IEEE Trans. Automat. Contr. 42 (1997) 528–534. [CrossRef] [Google Scholar]
  48. P. Morin, C. Samson, J.-B. Pomet and Z.-P. Jiang, Time-varying feedback stabilization of the attitude of a rigid spacecraft with two controls. Syst. Control Lett. 25 (1995) 375–385. [CrossRef] [Google Scholar]
  49. E. Moulay, Une contribution à l’étude de la stabilité en temps fini et de la stabilisation. Ph.D. thesis, L’École Centrale de Lille (2005). [Google Scholar]
  50. P. Morin, J.-B. Pomet and C. Samson, Development of time-varying feedback stabilization of nonlinear systems, in Nonlinear control design symposium NOLCOS (1998) 587–594. [Google Scholar]
  51. Y. Orlov, Discontinuous systems – Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions. Communications and Control Engineering, Springer-Verlag (2009). [Google Scholar]
  52. B.E. Paden and S.S. Sastry, A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans. Circuits Systems CAS-34 (1987) 73–82. [CrossRef] [Google Scholar]
  53. K.Y. Pettersen and O. Egeland, Exponential stabilization of an underactuated surface vessel, in Proc. 35th IEEE Conf. on Decision Control, Kobe, Japan (1996). [Google Scholar]
  54. Z. Qu, Robust control of nonlinear uncertain systems without generalized matching conditions. IEEE Trans. Automat. Contr. 40 (1995) 1453–1460. [CrossRef] [Google Scholar]
  55. N. Rouche, P. Habets and P. Laloy, Stability Theory by Lyapunov’s Direct Method. Applied Mathematical Sciences, Springer-Verlag (1977). [Google Scholar]
  56. E.P. Ryan, On Brockett’s condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J. Control Optim. 32 (1994) 1597–1604. [CrossRef] [MathSciNet] [Google Scholar]
  57. C. Samson, Velocity and torque feedback control of a nonholonomic cart, in Proceedings of International Workshop on Nonlinear and Adaptive Control 162, Springer-Verlag (1991) 125–151. [Google Scholar]
  58. C. Samson, Control of chained systems : Application to path following and time-varying point-stabilization of mobile robots. IEEE Trans. Automat. Contr. 40 (1995) 64–77. [CrossRef] [MathSciNet] [Google Scholar]
  59. E.D. Sontag, Mathematical Control Theory : Determinstic Finite Dimensional Systems, Text in Applied Mathematics 6. Springer-Verlag (1998). [Google Scholar]
  60. E.D. Sontag, Stability and stabilization : Discontinuities and the effect of disturbances, in Nonlinear Analysis, Differential Equations and Control, Proc. NATO Advanced Study Institute, Montreal, F.H. Clarke and R.J. Stern Eds. (1999) 551–598. [Google Scholar]
  61. E.D. Sontag and H.J. Sussmann, Remarks on continuous feedback, in 19th IEEE Conference on Decision and Control, Albuquerque (1980) 916–921. [Google Scholar]
  62. W. Su and M. Fu, Robust nonlinear control : beyond backstepping and nonlinear forwarding, in IEEE Conference on decision and control (1999) 831–836. [Google Scholar]
  63. W. Su and M. Fu, Robust stabilization of nonlinear cascaded systems. Automatica 42 (2006) 645–651. [CrossRef] [MathSciNet] [Google Scholar]
  64. H.J. Sussmann, Subanalytic sets and feedback control. J. Differential Equations 31 (1979) 31–52. [CrossRef] [MathSciNet] [Google Scholar]
  65. V.I. Vorotnikov, Partial Stability and Control. Birkhäuser (1998). [Google Scholar]
  66. V.I. Vorotnikov, Partial stability and control : The state-of-the art and development. Autom. Remote Control 66 (2005) 511–561. [CrossRef] [MathSciNet] [Google Scholar]
  67. A.L. Zuyev, On Brockett’s condition for smooth stabilization with respect to part of variables, in Proc. European Control Conference ECC’99, Karlsruhe, Germany (1999). [Google Scholar]
  68. A.L. Zuyev, On partial stabilization of nonlinear autonomous systems : Sufficient conditions and examples, in Proc. of the European Control Conference ECC’01, Porto, Portugal (2001) 1918–1922. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.