Open Access
Issue
ESAIM: COCV
Volume 29, 2023
Article Number 2
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2022087
Published online 11 January 2023
  1. K. Adimurthi, H. Prasad and V. Tewary, Local Holder regularity for nonlocal parabolic p-Laplace equations. arXiv:2205.09695 [math] (2022). [Google Scholar]
  2. V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with p, q-growth: a variational approach. Arch. Ratl. Mech. Anal. 210 (2013) 219–267. [CrossRef] [Google Scholar]
  3. V. Bögelein, F. Duzaar and P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations. J. Differ. Equ. 256 (2014) 3912–3942. [CrossRef] [Google Scholar]
  4. V. Bögelein, F. Duzaar, P. Marcellini and S. Signoriello, Nonlocal diffusion equations. J. Math. Anal. Appl. 432 (2015) 398–428. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Bögelein, F. Duzaar, L. Schötzler and C. Scheven, Existence for evolutionary problems with linear growth by stability methods. J. Differ. Equ. 266 (2019) 7709–7748. [CrossRef] [Google Scholar]
  6. L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case. Adv. Math. 304 (2017) 300–354. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Brasco, E. Lindgren and E. Parini, The fractional Cheeger problem. Interf. Free Bound. 16 (2014) 419–458. [CrossRef] [Google Scholar]
  8. L. Brasco, E. Lindgren and A. Schikorra, Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case. Adv. Math. 338 (2018) 782–846. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Brasco, E. Lindgren and M. Stroömqvist, Continuity of solutions to a nonlinear fractional diffusion equation. J. Evolut. Equ. 4 (2021) 4319–4381. [CrossRef] [Google Scholar]
  10. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). [Google Scholar]
  11. S.-S. Byun, J. Ok and K. Song, Hölder regularity for weak solutions to nonlocal double phase problems. arXiv:2108.09623 [math] (2021). [Google Scholar]
  12. L. Caffarelli, C.H. Chan and A. Vasseur, Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24 (2011) 849–869. [CrossRef] [Google Scholar]
  13. L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. Sec. Ser. 171 (2010) 1903–1930. [CrossRef] [Google Scholar]
  14. J. Chaker, Regularity of solutions to anisotropic nonlocal equations. Math. Zeitsch. 296 (2020) 1135–1155. [CrossRef] [Google Scholar]
  15. J. Chaker and M. Kassmann, Nonlocal operators with singular anisotropic kernels. Commun. Partial Differ. Equ. 45 (2020) 1–31. [CrossRef] [Google Scholar]
  16. J. Chaker and M. Kim, Local regularity for nonlocal equations with variable exponents. arXiv:2107.06043 [math] (2021). [Google Scholar]
  17. J. Chaker and M. Kim, Regularity estimates for fractional orthotropic p-Laplacians of mixed order. Adv. Nonlinear Anal. 11 (2022) 1307–1331. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Chaker, M. Kim and M. Weidner, Regularity for nonlocal problems with non-standard growth. arXiv:2111.09182 [math] (2021). [Google Scholar]
  19. H. Chang-Lara and G. Dávila, Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256 (2014) 130–156. [CrossRef] [Google Scholar]
  20. M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272 (2017) 4762–4837. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. De Giorgi, Conjectures concerning some evolution problems. Duke Math. J. 81 (1996) 255–268. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers. Annales de l'Institut Henri Poincaré C, Analyse non linéaire 33 (2016) 1279–1299. [CrossRef] [MathSciNet] [Google Scholar]
  23. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  24. I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity. ESAIM: COCV 7 (2002) 69–95. [CrossRef] [EDP Sciences] [Google Scholar]
  25. S. Ghosh, D. Kumar, H. Prasad and V. Tewary, Existence of variational solutions to doubly nonlinear nonlocal evolution equations via minimizing movements. J. Evol. Equ. 22 (2022) 74. [CrossRef] [Google Scholar]
  26. Q. Han, Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations. Adv. Nonlinear Anal. 11 (2022) 432–453. [Google Scholar]
  27. J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Matem. Pura Appl. 185 (2006) 411–435. [CrossRef] [Google Scholar]
  28. J. Kinnunen and M. Masson, Parabolic comparison principle and quasiminimizers in metric measure spaces. Proc. Am. Math. Soc. 143 (2015) 621–632. [Google Scholar]
  29. T. Kuusi, G. Mingione and Y. Sire, Nonlocal self-improving properties. Anal. PDE 8 (2015) 57–114. [CrossRef] [MathSciNet] [Google Scholar]
  30. H.C. Lara and G. Dávila, Regularity for solutions of non local parabolic equations. Calc. Variat. Partial Differ. Equ. 49 (2014) 139–172. [CrossRef] [Google Scholar]
  31. N. Liao, Höolder regularity for parabolic fractional p-Laplacian, arXiv:2205.10111 [math] (2022). [Google Scholar]
  32. A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface problem. J. Differ. Equ. 30 (1978) 340–364. [CrossRef] [Google Scholar]
  33. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ratl. Mech. Anal. 105 (1989) 267–284. [CrossRef] [Google Scholar]
  34. P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Differ. Equ. 90 (1991) 1-30. [CrossRef] [Google Scholar]
  35. P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105 (1993) 296–333. [CrossRef] [Google Scholar]
  36. P. Marcellini, Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90 (1996) 161–181. [CrossRef] [MathSciNet] [Google Scholar]
  37. P. Marcellini, Regularity under general and p, q– growth conditions. Discr. Continu. Dyn. Syst. S 13 (2020) 2009. [Google Scholar]
  38. A. Menovschikov, A. Molchanova and L. Scarpa, An extended variational theory for nonlinear evolution equations via modular spaces. SIAM J. Math. Anal. 53 (2021) 4865–4907. [CrossRef] [MathSciNet] [Google Scholar]
  39. G. Mingione and V. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 1 (2021) 125-197. [Google Scholar]
  40. M. Parviainen, Global higher integrability for parabolic quasiminimizers in nonsmooth domains. Calc. Variat. Partial Differ. Equ. 31 (2008) 75–98. [Google Scholar]
  41. H. Prasad and V. Tewary, Local boundedness of variational solutions to nonlocal double phase parabolic equations. arXiv:2112.02345 [math] (2021). [Google Scholar]
  42. F. Rindler, Calculus of Variations. Universitext. Springer, Cham (2018). [CrossRef] [Google Scholar]
  43. L. Scarpa and U. Stefanelli, Stochastic PDEs via convex minimization. Commun. Partial Differ. Equ. 46 (2021) 66–97. [CrossRef] [Google Scholar]
  44. J.M. Scott and T. Mengesha, Self-Improving inequalities for bounded weak solutions to nonlocal double phase equations. Commun. Pure Appl. Anal. 21 (2022) 183. [MathSciNet] [Google Scholar]
  45. E. Serra and P. Tilli, Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi. Ann. Math. Second Ser. 175 (2012) 1551–1574. [CrossRef] [Google Scholar]
  46. R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). [Google Scholar]
  47. U. Stefanelli, The De Giorgi conjecture on elliptic regularization. Math. Models Methods Appl. Sci. 21 (2011) 1377–1394. [Google Scholar]
  48. M. Strömqvist, Local boundedness of solutions to non-local parabolic equations modeled on the fractional p-Laplacian. J. Differ. Equ. 266 (2019) 7948–7979. [CrossRef] [Google Scholar]
  49. W. Wieser, Parabolic Q-minima and minimal solutions to variational flow. Manuscr. Math. 59 (1987) 63–107. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.