Open Access
Volume 29, 2023
Article Number 54
Number of page(s) 23
Published online 18 July 2023
  1. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008). [Google Scholar]
  2. M.K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks. Networks Heterogeneous Media 1 (2006) 41. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [Google Scholar]
  4. G. Bouchitté and G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures. Nonlinear Anal. Theory Methods Appl. 15 (1990) 679–692. [CrossRef] [Google Scholar]
  5. L. Brasco, A survey on dynamical transport distances. J. Math. Sci. 181 (2012) 755–781. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47–111. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.A. Carrillo, S. Lisini, G. Savaré and D. Slepčev, Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258 (2010) 1273–1309. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, An Interpolating Distance between Optimal Transport and Fisher-Rao. Foundations of Computational Mathematics. Springer Verlag (2010). [Google Scholar]
  9. L. Chizat, G. Peyré, B. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: dynamic and Kantorovich formulations. J. Funct. Anal. 274 (2018) 3090–3123. [Google Scholar]
  10. M. Erbar, D. Forkert, J. Maas and D. Mugnolo, Gradient flow formulation of diffusion equations in the wasserstein space over a metric graph, 2021. [Google Scholar]
  11. T.T. Georgiou, J. Karlsson and M.S. Takyar, Metrics for power spectra: An axiomatic approach. IEEE Trans. Signal Process. 57 (2009) 859–867. [CrossRef] [MathSciNet] [Google Scholar]
  12. D.B. Hill, M.J. Plaza, K. Bonin and G. Holzwarth, Fast vesicle transport in pc12 neurites: velocities and forces. Eur. Biophys. J. 33 (2004) 623–632. [CrossRef] [PubMed] [Google Scholar]
  13. I. Humpert, D. Di Meo, A.W. Puschel and J.-F. Pietschmann, On the role of vesicle transport in neurite growth: Modeling and experiments. Math. Biosci. 338 (2021) 108632. [CrossRef] [Google Scholar]
  14. S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures. Adv. Differ. Equ. 21 (2016) 1117–1164. [Google Scholar]
  15. M. Liero, A. Mielke and G. Savaré, Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48 (2016) 2869–2911. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger–-Kantorovich distance between positive measures. Invent. Math. 211 (2018) 969–1117. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Lisini and A. Marigonda, On a class of modified wasserstein distances induced by concave mobility functions defined on bounded intervals. Manuscr. Math. 133 (2020) 197–224. [Google Scholar]
  18. J.M. Mazón, J.D. Rossi and J. Toledo, Optimal mass transport on metric graphs. SIAM J. Optim. 25 (2015) 1609–1632. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Mindt, J. Lang and P. Domschke, Entropy-preserving coupling of hierarchical gas models. SIAM J. Math. Anal. 51 (2019) 4754–4775. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Monsaingeon, A new transportation distance with bulk/interface interactions and flux penalization. Calc. Variations Partial Differ. Equ. 60 (2021). [Google Scholar]
  21. B. Piccoli and F. Rossi, Generalized wasserstein distance and its application to transport equations with source. Arch. Rational Mech. Anal. 211 (2013) 335–358. [Google Scholar]
  22. R.T. Rockafellar, Integrals which are convex functionals. II. Pac. J. Math. 39 (1971) 439–469. [CrossRef] [Google Scholar]
  23. F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Basel (2015). [CrossRef] [Google Scholar]
  24. F. Santambrogio, {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bull. Math. Sci. 7 (2017) 87–154. [CrossRef] [MathSciNet] [Google Scholar]
  25. K. Tsaneva-Atanasova, N. Azzopardi, T. Galli and D. Holcman, Modeling vesicle trafficking and neurite growth. Biophys. J. (2007) 115A–115A. [Google Scholar]
  26. R. Tyrrell Rockafellar, Duality and stability in extremum problems involving convex functions. Pac. J. Math. 21 (1967) 167–187. [CrossRef] [Google Scholar]
  27. R. Tyrrell Rockafellar, Convex Analysis. Princeton University Press (1970). [CrossRef] [Google Scholar]
  28. C. Villani, Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg (2008). [Google Scholar]
  29. C. Villani, Topics in Optimal Transportation, Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]
  30. A. Yadaw, M. Siddiq, V. Rabinovich, R. Tolentino, J. Hansen and R. Iyengar, Dynamic balance between vesicle transport and microtubule growth enables neurite outgrowth. PLOS Computat. Biol. 15 (2019) e1006877. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.