Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 11
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2024092
Published online 10 February 2025
  1. M. Wakaiki, Stability of infinite-dimensional sampled-data systems with unbounded control operators and perturbations. Syst. Control Lett. 162 (2022) Paper No. 105170, 7. [CrossRef] [Google Scholar]
  2. M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009). [Google Scholar]
  3. W. Chen, H. He, X. Lu and X. Deng, Impulsive observer-based design for state estimation of a class of nonlinear singularly perturbed systems with discrete measurements. Nonlinear Anal. Hybrid Syst. 41 (2021) Paper No. 101027, 15. [Google Scholar]
  4. E. Trélat, G. Wang and Y. Xu, Characterization by observability inequalities of controllability and stabilization properties. Pure Appl. Anal. 2 (2020) 93–122. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Xu, Characterization by detectability inequality for periodic stabilization of linear time-periodic evolution systems. Syst. Control Lett. 149 (2021) Paper No. 104871, 7. [Google Scholar]
  6. H. Liu, G. Wang, Y. Xu and H. Yu, Characterizations of complete stabilizability. SIAM J. Control Optim. 60 (2022) 2040–2069. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Liu, G. Wang and H. Yu. Stabilizability of linear systems with discrete observation mode. SIAM J. Control Optim. 61 (2023) 2520–2545. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Zheng, Linear System Theory, 2nd edn. Tsinghua University Press, Beijing (2020). [Google Scholar]
  9. T. Chen and B. Francis, Optimal Sampled-data Control Systems. Springer-Verlag London, Ltd., London (1996). [Google Scholar]
  10. M.L.J. Hautus, Stabilization controllability and observability of linear autonomous systems. Indag. Math. 32 (1970) 448–455. [CrossRef] [Google Scholar]
  11. S. Huang, G. Wang and M. Wang, Characterizations of stabilizable sets for some parabolic equations in ℝn. J. Diff. Eq. 272 (2021) 255–288. [CrossRef] [Google Scholar]
  12. V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Kobayashi, Feedback stabilization of parabolic distributed parameter systems by discrete-time input-output data. SIAM J. Control Optim. 22 (1984) 509–523. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Lin, H. Liu and G. Wang, Output feedback stabilization for heat equations with sampled-data controls. J. Diff. Eq. 268 (2020) 5823–5854. [CrossRef] [Google Scholar]
  15. H. Logemann, R. Rebarber and S. Townley, Generalized sampled-data stabilization of well-posed linear infinitedimensional systems. SIAM J. Control Optim. 44 (2005) 1345–1369. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Logemann, Stabilization of well-posed infinite-dimensional systems by dynamic sampled-data feedback. SIAM J. Control Optim. 51 (2013) 1203–1231. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Fridman and N. Bar Am, Sampled-data distributed H control of transport reaction systems. SIAM J. Control Optim. 51 (2013) 1500–1527. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. Kang and E. Fridman, Distributed sampled-data control of Kuramoto–Sivashinsky equation. Automatica J. IFAC 95 (2018) 514–524. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Wang and J. Wang, Mixed H2/H sampled-data output feedback control design for a semi-linear parabolic PDE in the sense of spatial L norm. Automatica J. IFAC 103 (2019) 282–293. [CrossRef] [MathSciNet] [Google Scholar]
  20. I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of 1-D parabolic PDEs. Automatica J. IFAC 87 (2018) 226–237. [CrossRef] [MathSciNet] [Google Scholar]
  21. I.G. Rosen and C. Wang, On stabilizability and sampling for infinite-dimensional systems. IEEE Trans. Automat. Control 37 (1992) 1653–1656. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Rebarber and S. Townley, Stabilization of distributed parameter systems by piecewise polynomial control. IEEE Trans. Automat. Control 42 (1997) 1254–1257. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl. 96 (2011) 555–590. [Google Scholar]
  24. P. Lissy and E. Zuazua, Internal observability for coupled systems of linear partial differential equations. SIAM J. Control Optim. 57 (2019) 832–853. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Qin and G. Wang, Controllability of impulse controlled systems of heat equations coupled by constant matrices. J. Diff. Eq. 263 (2017) 6456–6493. [CrossRef] [Google Scholar]
  26. Q. Yan and H. Yu, Exponential stabilization on infinite dimensional system with impulse controls. J. Diff. Eq. 309 (2022) 231–264. [CrossRef] [Google Scholar]
  27. G. Wang, M. Wang and Y. Zhang, Observability and unique continuation inequalities for the Schrödinger equation. J. Eur. Math. Soc. 21 (2019) 3513–3572. [CrossRef] [MathSciNet] [Google Scholar]
  28. V. Barbu, Stabilization of Navier–Stokes Flows. Springer, London (2011). [CrossRef] [Google Scholar]
  29. M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM Control Optim. Calc. Var. 20 (2014) 924–956. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  30. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952) 341–366. [CrossRef] [MathSciNet] [Google Scholar]
  31. O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, 2nd edn. Birkhäuser/Springer, [Cham] (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.