HTTP_Request2_Exception Unable to connect to tcp://think-ws.ca.edps.org:85. Error: php_network_getaddresses: getaddrinfo failed: Name or service not known The twin blow-up method for Hamilton–Jacobi equations in higher dimension | ESAIM: Control, Optimisation and Calculus of Variations (ESAIM: COCV)
Open Access
Issue
ESAIM: COCV
Volume 31, 2025
Article Number 12
Number of page(s) 27
DOI https://doi.org/10.1051/cocv/2024090
Published online 12 February 2025
  1. N. Forcadel, C. Imbert and R. Monneau, Coercive Hamilton-Jacobi equations in domains: the twin blow-ups method. Comptes Rendus. Math. 362 (2024) 829–839. [CrossRef] [Google Scholar]
  2. N. Forcadel, C. Imbert and R. Monneau, Non-convex coercive Hamilton-Jacobi equations: Guerand’s relaxation revisited. Pure and Applied Analysis 6 (2024) 1055–1089. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Barles, Solutions de Viscosité des Équations de Hamilton–Jacobi, Mathématiques & Applications, vol. 17. Springer, Paris (1994). [Google Scholar]
  4. G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications. J. Diff. Eq. 154 (1999) 191–224. [CrossRef] [Google Scholar]
  5. G. Barles and E. Chasseigne, On modem approaches of Hamilton-Jacobi equations and control problems with discontinuities. A guide to theory, applications, and some open problems. (English) Progress in Nonlinear Differential Equations and Their Applications 104. Cham: Birkhäuser. xxiv (2024) 573. [Google Scholar]
  6. P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability. Rend. Lincei Mat. Appl. 27 (2016) 535–545. [Google Scholar]
  7. P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions. Rend. Lincei Mat. Appl. 28 (2017) 807–816. [Google Scholar]
  8. J. Guerand, Effective nonlinear Neumann boundary conditions for 1D nonconvex Hamilton–Jacobi equations. J. Diff. Eq. 263 (2017) 2812–2850. [CrossRef] [Google Scholar]
  9. C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50 (2017) 357–448. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.