Free Access
Issue |
ESAIM: COCV
Volume 19, Number 1, January-March 2013
|
|
---|---|---|
Page(s) | 91 - 111 | |
DOI | https://doi.org/10.1051/cocv/2011207 | |
Published online | 01 March 2012 |
- A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on ℝn, Progress in Mathematics 240. Binkäuser, Verlag (2006). [Google Scholar]
- A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rational Mech. Anal. 159 (2001) 253–271. [Google Scholar]
- G. Arioli and A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Rational Mech. Anal. 170 (2003) 277–295. [Google Scholar]
- A. Bahri and P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 365–413. [CrossRef] [MathSciNet] [Google Scholar]
- T. Bartsch, E.N. Dancer and S. Peng, On multi-bump semi-classical bound states of nonlinear Schrödinger euqations with electromagnetic fields. Adv. Differential Equations 7 (2006) 781–812. [Google Scholar]
- R. Brummelhuisa, Expotential decay in the semi-classical limit for eigenfunctions of Schrödinger operators with magnetic fields and potentials which degenerate at infinity. Comm. Partial Differential Equations 16 (1991) 1489–1502. [CrossRef] [MathSciNet] [Google Scholar]
- J. Byeon and Y. Oshita, Existence of multi-bump standing waves with a critcal frequency for nonlinear Schrödinger euqations. Comm. Partial Differential Equations 29 (2004) 1877–1904. [CrossRef] [MathSciNet] [Google Scholar]
- D. Cao and H.P. Heinz, Uniquness of positive multi-bump bound states of nonlinear elliptic Schrödinger equations. Math. Z. 243 (2003) 599–642. [CrossRef] [MathSciNet] [Google Scholar]
- D. Cao and E.S. Noussair, Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. J. Differential Equations 203 (2004) 292–312. [CrossRef] [MathSciNet] [Google Scholar]
- D. Cao and S. Peng, Multi-bump bound states of Schrödinger equations with a critical frequency. Math. Ann. 336 (2006) 925–948. [CrossRef] [MathSciNet] [Google Scholar]
- D. Cao and Z. Tang, Existence and Uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields. J. Differential Equations 222 (2006) 381–424. [CrossRef] [MathSciNet] [Google Scholar]
- S. Cingolani and M. Clapp, Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation. Nonlinearity 22 (2009) 2309–2331. [CrossRef] [Google Scholar]
- S. Cingolani and S. Secchi, Semiclassical limit for nonlinear Schrödinger equations with electromagnetic fields. J. Math. Anal. Appl. 275 (2002) 108–130. [CrossRef] [MathSciNet] [Google Scholar]
- S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magnetic potentials having polynomial growths. J. Math. Phys. 46 (2005) 053503. [CrossRef] [Google Scholar]
- S. Cingolani, L. Jeanjean and S. Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions. ESAIM : COCV 15 (2009) 653–675. [CrossRef] [EDP Sciences] [Google Scholar]
- M. del Pino and P.L. Felmer, Local mountain passes for a semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996) 121–137. [Google Scholar]
- M. del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149 (1997) 245–265. [CrossRef] [MathSciNet] [Google Scholar]
- M. del Pino and P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 127–149. [CrossRef] [MathSciNet] [Google Scholar]
- M. del Pino and P.L. Felmer, Semi-classical states of nonlinear Schrödinger equations : a varational reduction method. Math. Ann. 324 (2002) 1–32. [CrossRef] [MathSciNet] [Google Scholar]
- M. Esteban and P.L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations I, Progr. Nonlinear Differential Equations Appl. 1. Birkhäuser, Boston, MA (1989) 401–449. [Google Scholar]
- A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69 (1986) 397–408. [CrossRef] [MathSciNet] [Google Scholar]
- B. Helffer, On spectral theory for Schrödinger operator with magnetic potentials. Spectral and scattering theory and applications, Adv. Stud. Pure Math. 23. Math. Soc. Japan, Tokyo (1994) 113–141. [Google Scholar]
- B. Helffer, Semiclassical analysis for Schrödinger operator with magnetic wells, Quasiclassical methods (Minneapolis, MN, 1995), IMA Vol. Math. Appl. 95. Springer, New York (1997) 99–114. [Google Scholar]
- B. Helffer and J. Sjöstrand, The tunnel effect for the Schrödinger equation with magnetic field. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987) 625–657. [MathSciNet] [Google Scholar]
- K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagenetic fields. Nonlinear Anal. 41 (2000) 763–778. [Google Scholar]
- M.K. Kwong, Uniqueness of positive solutions of Δu − u + up = 0 in ℝn. Arch. Rational Mech. Anal. 105 (1989) 243–266. [MathSciNet] [Google Scholar]
- Y.Y. Li, On a singularly perturbed equation with Neumann boundary condition. Comm. Partial Differential Equations 23 (1998) 487–545. [CrossRef] [MathSciNet] [Google Scholar]
- G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system. J. Math. Phys. 52 (2011) 053505. [CrossRef] [Google Scholar]
- G. Li, S. Peng and C. Wang, Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields. J. Differential Equations 251 (2011) 3500–3521. [CrossRef] [MathSciNet] [Google Scholar]
- L. Lin and Z. Liu, Multi-bump solutions and multi-tower solutions for equations on ℝN. J. Funct. Anal. 257 (2009) 485–505. [CrossRef] [MathSciNet] [Google Scholar]
- L. Lin, Z. Liu and S. Chen, Multi-bump solutions for a semilinear Schrödinger equation. Indiana Univ. Math. J. 58 (2009) 1659–1689. [CrossRef] [MathSciNet] [Google Scholar]
- Y.G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a. Comm. Partial Differential Equations 14 (1989) 833–834. [Google Scholar]
- Y.G. Oh, On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131 (1990) 223–253. [CrossRef] [Google Scholar]
- P.H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992) 270–291. [Google Scholar]
- C. Sulem and P.L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139. Springer-Verlag, New York, Berlin, Heidelberg (1999). [Google Scholar]
- Z. Tang, Multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields and critical frequency. J. Differential Equations 245 (2008) 2723–2748. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Tang, Multiplicity of standing wave solutions of nonlinear Schrödinger equations with electromagnetic fields. Z. Angew. Math. Phys. 59 (2008) 810–833. [CrossRef] [MathSciNet] [Google Scholar]
- X. Wang, On a concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153 (1993) 229–244. [CrossRef] [Google Scholar]
- Z.Q. Wang, Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations. J. Differential Equations 159 (1999) 102–137. [CrossRef] [MathSciNet] [Google Scholar]
- X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. 28 (1997) 633–655. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.